
RL-TR-94-212
Final Technical Report
December 1994

MISSION CRITICAL FAILURE EFFECTS
ANALYSIS USING QUANTITATIVE
TECHNIQUES

Research Triangle Institute

Mark Royals, Rahul Kapoor, and Nick Kanopoulos

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

mom i6f
Rome Laboratory

Air Force Materiel Command
Griff iss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-212 has been reviewed and is approved for publication.

APPROVED:

WARREN H. DEBANY, JR., Ph.D., P.E.
Project Engineer

FOR THE COMMANDER:
^<^U^v\ . DctA^

JOHN J. BART
Chief Scientist, Reliability Sciences
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (ERDA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Put*: report*« burden for this eotaction of Hormatoi Is esrjriated to average 1 hour per response, hdudng the time for reviewing Instructor sesrchhg existing dsts soLras.
gathering andmaHartigthedrfaneeded, andcorrpleoTgsndrevlewlrigthecolectoiof Wormaton Sendcorr^^
cdectoi of ^formation, hdudng suggestions for redudng this rxra^ to WiHhlngJon Hesoouarters Services, Dlredcfste
Davh Highway, Suta 1204, Arsrgton, VA 22202-4302, and to the OfUca of Management and Budget. Paperwork ReAjcto Prolea (0704<]18q, W

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE

December 1994

a REPORT TYPE AND DATES COVERED

Final Feb 93 - Feb 94

4. TITLE AND SUBTITLE

MISSION CRITICAL FAILURE EFFECTS ANALYSIS "USING
QUANTITATIVE TECHNIQUES '

5. FUNDING NUMBERS

6. AUTHOR(S)

Mark Royals, Rahul Kapoor, and Nick Kanopoulos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
Research Triangle Institute
Center for Digital Systems Engineering
P.O. Box 12194
Research Triangle Park NC 27709

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (ERDA)
525 Brooks Rd
Griffiss AFB NY 13441-4505

c - F30602- ■93- -C- -0009
PE - 62702F
PR - 2338
TA
WU

— 01
PM

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-94-212

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer:
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Warren H. Debanv. Jr./ERDA/(3151 330-2047

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(MaKimxTi OTwords)

This report addresses the problem of assessing the criticality of faults in a large
digital system. In particular, it addresses simulation-based methods for determining
the effectiveness of built-in-^-test. The approach is based on automated fault
injection in a VHDL model of the system, and statistical analysis of the resulting
behavior of the system. The behavioral entities of the VHDL model would correspond
to Line Replaceable Units (LRUs) or Line Replaceable Modules (LRMs). This report
provides the top level design requirements and rationale for the detailed design of
this capability.

14. SUBJECT TERMS
Fault effects, Criticality analysis, Fault injection,
Built-in-test, System simulation, Design tradeoffs (see reverse)

17. SECURITYCLASSIFICATION

IED

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITYCLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

15. NUMBER OF PAGES
106

16. PRICE CODE

20. UMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescrbed by ANSI Std Z39-1 a
298-102

Contents

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist

m
Avail and/or

Special

1 INTRODUCTION

1.1 Technical Rationale

1.2 Motivation

1.3 Technical Approach 5

1.4 Modeling 8

1.5 About this Report 9

2 A PROPOSED TOOL STRUCTURE 12

2.1 Tool Outline 12

2.2 Tool Structure 14

2.2.1 Kernel 14

2.2.2 Fault Injector 16

2.2.3 Criticality Detector 17

2.2.4 Built-in Test Evaluation 17

2.2.5 Interactions: 18

3 FAULT INJECTION 19

3.1 Objective 19

3.2 Proposed Fault Injection Mechanism 19

3.3 Some Experimental Results 27

3.3.1 Statistical Models 29

3.4 Benefits of the Proposed Approach 31

3.5 Test Bench Generator 31

3.5.1 The Fault Selection and Injection Test Bench 33

3.5.2 The Fault Simulation Bench 36

4 CRITICALITY ANALYSIS 38

4.1 Determination of Fault-Effect Criticality 38

4.2 Methods for Criticality Analysis 40

4.3 Quantized Specifications . . . 41

4.4 System Attributes Needed for Performing Criticality Analysis 44

4.5 Attribute Association 46

4.6 How Simulation Output Can Contribute to Theoretical Evaluation 48

4.7 Summary 49

5 BIT EVALUATION 53

5.1 BIT Evaluation Approach 53

5.2 BIT Measures 55

5.3 Recommended BIT Insertion Techniques 60

5.3.1 Survey of Automatic BIT Insertion Techniques 60

5.4 Tracing Critical Faults 66

6 TOOLS 68

6.1 The Kernel 69

6.2 Queries 72

6.3 Simulator 77

6.4 Fault Injector 79

6.5 Criticality Detector §0

6.6 BIT Evaluation Tool 82

6.7 Online Help and Tutorial §3

6.7.1 Level 1 33

6.7.2 Level 2 85

6.8 Enhancements and Options, User Interface Manual 85

References gg

ii

List of Figures

1.1 The Basic Approach

1.2 Hierarchical Structure of a System 10

2.1 The Tool Structure 13

2.2 The Concept of Kernel 15

3.1 Fault Injection Model 24

3.2 Statistical Fault Generation 28

3.3 Statistical Fault Generation 30

3.4 User Specified Fault Model 32

4.1 Basic Methodology 39

4.2 Criticality Analysis Methods 41

4.3 Fields for Specification 43

4.4 Sampling Period Can Vary 44

4.5 Attributes to be Specified for Criticality Analysis 47

4.6 Criticality Detector as a Comparator 50

5.1 The BIT Evaluation Tool 56

5.2 The BIT Evaluation Tool with Multiple Performance Measures 61

5.3 TIGER: Testability Insertion Guidance Tool 63

5.4 Tracing a Critical Fault 66

6.1 Graphical Interface Incorporating the Proposed Tool Set in the Design Cycle 70

6.2 The Design Cycle 71

6.3 Parts in Fault Injector 79

6.4 Criticality Detector 81

Xll

List of Tables

3.1 Initial File Format for Fault List 34

3.2 Format for Fault List in Single Fault Mode 35

3.3 Format for Fault List in Multiple Fault Mode 36

4.1 Default Values for Signal Attributes 48

4.2 File Format for Fault-Free System Logfile 51

4.3 File Format for Faulty System Logfiles 51

5.1 File Format for BIT Logfiles 54

6.1 Recommended Set of Queries . 73

6.2 File Format for BIT Logfiles 83
iv

List of Recommended Tools

QuickSimll is a registered trademark of Mentor Graphics Corporation, 8005 S.W. Boeck-

man Road, Wilsonville, Oregon 97070.

DesignArchitect is a registered trademark of Mentor Graphics Corporation, 8005 S.W.

Boeckman Road, Wilsonville, Oregon 97070.

Falcon Framework is a registered trademark of Mentor Graphics Corporation, 8005 S.W.

Boeckman Road, Wilsonville, Oregon 97070.

AMPLE is a registered trademark of Mentor Graphics Corporation, 8005 S.W. Boeckman

Road, Wilsonville, Oregon 97070.

DesignManager is a registered trademark of Mentor Graphics Corporation, 8005 S.W.

Boeckman Road, Wilsonville, Oregon 97070.

Disclaimer: The mentioning of commercial tools in this report does not constitute an
endorsement by the Air Force for those tools. These tools are recommended by the authors
of this report because they are determined to be suitable for the proposed tool environment.

Acknowledgements

This report was prepared for the Rome Laboratory (RL) under Contract No. F30602-
93-C-0009. The work was performed at the Research Triangle Institute (RTI) by Mark
Royals, Rahul Kapoor, Nick Kanopoulos (Project Manager), report editing performed by
Ingrid Agolia. The technical aspects of this project were monitored by Dr. Warren Debany
(RL) who also provided valuable technical direction to the project team.

vx

1. INTRODUCTION

The design specifications for modern DoD systems include test and diagnostic requirements

for on-line and off-line detection of 100% of mission-critical faults. However, the definition

of mission-critical faults (i.e., faults that cause loss of life, property, and mission abort)

describes only the effect of their manifestation on system operation at the overall weapon

system level. For a system developer to comply with test and diagnostic requirements, it

is necessary to identify quantitatively the faults in system operation, at different levels of

system hierarchy (i.e., component, board, module, subsystem), that can cause the effect

described by the "mission-critical fault" definition. Furthermore, the same capability is

required by the Government for auditing system developer compliance with requirements.

The identification of mission-critical faults in a quantitative manner will allow the system

designer to properly allocate test and diagnostic resources early in the design phase so that

a required maintenance approach can be effectively implemented. The capability of fault

injection, while the system is performing its operation, will allow the designer to evaluate

and demonstrate the effectiveness of system-level BIT and fault-tolerance features. These

capabilities do not exist today as part of a CAD environment, however, this project outlines

the requirements for such a system. These capabilities are very much needed by weapon

system developers who are using ad-hoc approaches to perform some of the cited functions

and resort to extensive, costly field testing to evaluate the effectiveness of BIT and fault-

tolerance features.

For a new tool development, it is important to consider possible interfaces to existing

tools that can be used synergistically to aid the designer in different aspects of the system

design process.

Tool development will be guided by user needs. Tool effectiveness in performing intended

functions will be evaluated using a real-life system as a benchmark. Close interaction between

p. 1

the tool development team and a weapon system development team will guarantee relevance

of tool output in making decisions for the design of near-future systems. Furthermore, close

interaction with the end-user will insure an interface compatible with widely acceptable

design practices and standards. This, in turn, will facilitate the transfer of the developed

technology to weapon system developers.

1.1. Technical Rationale

Modern DoD electronic systems rely heavily on advanced technology to achieve mission ob-

jectives while maintaining high levels of availability and survivability. To accomplish these

features, the design specifications of these systems include stringent requirements addressing

fault tolerance, integrated diagnostics, and Built-in Test (BIT) capabilities. For example,

the requirements for continuous BIT in the INEWS system (i.e., an electronic warfare sys-

tem to be used by several aircraft) read: "C-BIT shall detect all mission-critical faults,

be non-interfering, have a false alarm rate less than 1%, enable reconfiguration, and report

mission-critical and non-mission-critical faults to the air crew via a resource manager. Faults

reported to the air crew shall be identified as being either mission-critical or non-critical".

The major issues that have to be resolved before designing according to this specification

are the following:

1. Identification of mission-critical faults in a quantitative manner.

2. Test resource allocation for implementing BIT and fault tolerance for detection and

recovery of faults, system reconfiguration, and air crew reporting.

3. Evaluation of the capability of the BIT to perform its function at the level required by

the specification.

The objective of the work performed in this project was to develop a methodology

whereby mission-critical faults can be identified for a given application through the use

p. 2

of simulation, and to define a CAD tool environment that can implement this methodology.

1.2. Motivation

A large number of techniques have been developed in the past for performing Failure Mode

Effects Analysis (FMEA). Traditional techniques initially developed are: the Tabular ap-

proach [1], the Matrix techniques [2,3] and the Bayesian approach [4,5]. The tabular tech-

nique is a "worksheet" approach which provides a simple inductive methodology, viable at

any design level. Supplementary techniques which are based on tabular FMEA output have

also been developed. These are the failure combination method [6] which explores the effects

of multiple, and externally induced failures, and the Hardware/Software interface analysis

[7].

The matrix technique provides a grided-plot format of the effects of failures in inputs,

outputs, connections, and parts, at the lower level of the design. In this technique, the lower

levels of analysis propagate to the upper levels following a bottom-up approach. A more

advanced approach that is based on matrix techniques calculates probabilities of failures, in

addition to the failure effects. This technique was automated in [8,9].

The Bayesian FMEA is a statistical approach that lends itself to automation. The pri-

mary inputs of the Bayesian FMEA are a reliability table and a criticality table, which relate

what component(s) are likely to have failed given a system output failure.

Another major category of FMEA techniques is based on the fault-tree analysis [10,11].

In fault-tree analysis a specific undesirable system failure is defined, and a fault-tree of lower-

level faults that caused the top-level failure is constructed using Boolean algebra. Fault-tree

analysis is suitable for the analysis of fault-tolerant designs. Supplementary techniques based

on fault-trees include the Sneak Circuit Analysis [12,13], System Phase Modeling [14], and

the Event-Circuit Analysis [15].

p. 3

Finally, the last class of existing FMEA methods includes techniques that consist of

a combination of the previously mentioned approaches. One example of these techniques

is the Tabular Systems Reliability Analysis [16] which combines aspects of tabular FMEA,

fault-tree analysis, and Markov chain theory. This technique is well suited for evaluation of

fault-tolerant distributed systems. Another example is the Integrated Critical Path Analysis

[17], which examines failures that are caused by hardware/software interfaces. This technique

combines aspects of tabular FMEA, fault-tree analysis, and sneak circuit analysis.

The existing FMEA methods can be divided into two major classes: The first class, which

includes the most of the traditional FMEA techniques (i.e., tabular, matrix, fault trees, etc.),

requires a significant involvement from a prospective user in terms of detailed knowledge of

the examined system and the effects of failures in all the system components. The second

class consists of the techniques that use analysis methods. These techniques require less

user involvement, but they are highly specialized and demand large amounts of computing

resources. Finally, the automation of such techniques is not considered to be feasible [18].

A common characteristic of all these techniques is their basis of analysis using first-order

dependencies, topological information for the system, and qualitative information about

failure modes. The detail involved in performing traditional FMEA techniques also causes

the analysis to be overly time-consuming and costly. Failure effects analyses also tend to

be unattractive from a user's point of view because typically a human must systematically

categorize all the failure modes of the system. The analysis methods that are used to assess

systems which depend on software activity is a limiting factor for all these techniques. The

performance of these methods deteriorates even further when they are applied to complex

computer systems. Because of all these problems, the use of FMEA techniques has been

reduced to fulfilling contractual or quality assurance obligations [19].

In addition, the analysis of failure effects in preliminary design stages, where the system

architecture has not been finalized, requires a high-level functional approach. Automation

p. 4

tools capable of performing this type of analysis do not exist at this time. Moreover, the

criticality of fault effects is mission dependent, but is not considered by any of the traditional

FMEA approaches.

The proposed project will develop a method for determining quantitatively the effect

of component failures to system operation by simulating the system architecture with the

application code. The criticality of the fault effects will be determined by comparing their

magnitude to user-specified thresholds defining mission-critical system operation margins.

The advantage of the proposed method is that it provides results that relate the criticality

of fault effects to a mission, thus allowing the user to design and evaluate system features

such as BIT and fault tolerance, based on their contribution to fulfilling system mission

requirements.

Finally, the automation of the proposed method with prototype CAD tools and their

interface with other existing tools will create a unique design environment where the user can

evaluate the performance, the testability, and the reconfigurability of a system, in addition

to the FMEA analysis.

1.3. Technical Approach

To meet the objectives of the program, the work can be described by the following tasks:

1. Develop an overall methodology for performing meaningful fault injection, simulation

of a system architecture, and identification of the faults which are deemed mission-

critical.

2. Develop a technique to inject faults within a system in a statistical manner which

adequately maps observed failure modes to faulty components. The user has the choice

of injecting particular faults, which occur based on an assumed probability distribution

function, and they can be injected at any interface between components.

p. 5

3. Describe a methodology for comparing the response of the faulty system to the fault-

free case and determine the criticality of the error response based on user-supplied

specifications. Here the issue is the development of a framework for the user to specify

the criticality of faults and for a tool to use this specification in making decisions.

4. Develop methods for evaluating the effectiveness of Built-in Test schemes which have

been implemented within the overall design. This is the stage where a complete simu-

lation model is necessary so that a tool can evaluate a chosen BIT scheme.

5. Define a set of requirements for a proposed design tool set which can implement the

methodology steps described above. These tools are parts of an overall CAD framework

that uses the existing tools in the framework to implement some of the functions

outlined, and is pointed to wherever possible. There is a need to develop software to

implement parts of the methodology which find no implementation in form of existing

tools, and also for the interface between various tools.

The block diagram in Figure 1.1 outlines the approach used in this study:

This figure illustrates how the system designer may design a system using a system

component library based on VHDL code for different modules. After such a description is

completed, the designer can simulate the circuit until satisfied with the functionality. At this

stage the designer may have the first prototype model with possibly some BIST circuitry

included. The next step is to identify mission-critical faults, and to assess if the used BIST

circuitry is able to trap the identified mission-critical faults. This can be accomplished by

injecting faults in the circuit. The injected faults are a subset of all possible faults, and

are designed to identify the mission-critical faults. Once such faults have been identified, it

should be seen whether all such faults are being flagged off by the BIST circuitry. If not, the

BIST scheme needs to be refined or its placement needs to be modified. To aid in selecting

an appropriate subset of the total fault set failure rate, reliability data may be required, and

p. 6

System
Program
Code

Language
Compiler

VHDL
Design
Library

Downloaded
into System
Memory
Description

Behavioral
System
Description

Knowledge
Base of
User
Defined
Failure
Modes

Failure-Mode
Injector

Failure Rate
Reliability
Database

Faulty System
Description
in VHDL

System
Data

VHDL
Simulator

Failure
Statistics User

Supplied
Constraints

Criticality
Analysis

Tool
Criticality
Report

Figure 1.1. The Basic Approach

p. 7

a knowledge base for user-defined failure modes may be of great assistance.

After the VHDL simulation of the faulty circuit and the comparison of its responses

with those of the fault-free system, a criticality report can be prepared and used for further

analysis.

The steps followed in developing the technical approach depicted in the figure are the

following:

•

•

Research available databases and the open literature to determine the current state-

of-the-art techniques for performing one or more of the tasks listed above.

Because of the emergence of VHDL as a standard method of describing the behav-

ior/structure of a digital design, the proposed approach should leverage the wide vari-

ety of CAE tools which have been implemented to support the use of VHDL.

• Utilize a knowledge base concerning likely failure modes and their error manifestations

for each of the described VHDL entities. Failure rates for each entity should also be

provided from either external sources or best-guess estimates.

• User-controlled statistical parameters based on various probabilistic distribution func-

tions can be utilized to govern the severeness and frequency of the failure injection

process.

• Develop techniques to quantitatively evaluate the faulty simulation response with the

fault-free response based on user-supplied threshold characteristics.

1.4. Modeling

As emphasized above, a model for the system to be evaluated is needed for quantitative fault

model and effect analysis. The model should be expressed in VHDL, and certain attributes

should characterize the model as discussed below:

p. 8

• There should be a general way for developing a model for most of the systems of interest

(i.e., the designer must be able to insert both design changes and BIT circuitry with

relative ease).

• The model should be hierarchical in nature so that the designer can check or modify

the design at any level. Figure 1.2 shows how a system (the largest rectangle) can

be visualized as consisting of several subsystems (smaller rectangles inside the largest

one). The system and each of the subsystems include certain attributes which help

describe the system better. Such attributes are shown by ellipses in the figure. This

model is especially true of VHDL descriptions of systems. This is because the VHDL

itself describes systems in a hierarchical manner. The entities can include other entities

in a hierarchical manner.

• Well-defined structure or quantized fields for ease in handling the data provided by the

user. This also helps the user convey requirements to the tool easily.

• Flexible in the sense that it can be used at any level of design abstraction, (i.e., at the

behavioral level, structural level, etc.).

1.5. About this Report

This report initially gives the reader a general idea of the functionality and the structure of

a proposed tool set for performing mission-critical failure effects analysis, with this chapter

as the introduction and the next chapter describing the general structure of the tool set and

how various tools fit together.

The individual modules of the tool set are then discussed in detail, including their func-

tion, emphasising how the decisions were made, and some alternative options which may be

functionally viable for the objectives of this project.

p. 9

THE ELLIPSES DENOTE THE FIELDS.

THE RECTANGLES ARE COMPONENTS AT DIFFERENT
LEVELS (e.g., SYSTEM, SUBSYSTEM, COMPONENTS).

Figure 1.2. Hierarchical Structure of a System

p. 10

After conceptually explaining each tool, the issue of implementation is addressed. Various

details; such as the interfacing tools and their requirements, the suggested tool set, and how

each fits in the general framework, are discussed.

p. 11

2. A PROPOSED TOOL STRUCTURE

2.1. Tool Outline

The proposed tool consists of three parts as shown in Figure 2.1 These parts perform fault

generation and injection, criticality analysis and BIT evaluation, respectively. In Figure 2.2

the dependencies and dataflow have been deliberately omitted for the sake of brevity. The

emphasis is on clarifying the high-level concept of the tool function. The tool requirements

and structure can be summarized as follows:

Functional Requirements:

The input to the tool will be the VHDL model of the application system which the designer

is simulating. While simulating the application, the designer has certain specifications about

the system behavior which need to be met. This implies that the designer can define a certain

deviation of the system from the intended "normal" behavior, which may be considered

non-critical to the system mission. The tool is required to check the effect of failures on

the intended behavior of the system, and more specifically, if failures are mission-critical

according to the user specified criterion.

Inputs to the Tool:

From the requirements of this tool, it is simple to see that the user has to specify the

application code of the application to the tool. This code must be in VHDL, and the entities

used by the designer have some of the attributes which the designer must specify to aid the

tool in analyzing the criticality of failure (an example of these attributes can be whether the

component being modeled by the entity description in VHDL is synchronous or not). The

description of these attributes is deferred to the chapter describing the criticality tool.

Another set of inputs expected by the tool are the specifications of criticality. Through

these specifications, the designer specifies the tolerance levels of the system. These tolerance

levels are actually specified in terms of the outputs of the system. For example, the designer

p. 12

General Layout of the tool.

Failure Modes(optional)

Reliability Data (optional)

 *

i

i £
Application Code

Fault Injection

Criticality Detection

BIT verification

Mission Cri ;ical Faults BIT E valuation

Figure 2.1. The Tool Structure

p. 13

might specify that if a particular output (say x) differs from its fault-free expected value

by 10 percent, then the criticality is to be flagged. In effect, the designer specifies what is

considered to be mission-critical in terms of the quantitative effect of faults.

The third input (optional) is the reliability data of various components being used to

model the system. These data indicate the probability of failure of these components, and

can be especially helpful in the fault injection stage. If these data are not present, then equal

probability of failure is assumed for each component.

Output of the Tool:

The tool will identify all the mission-critical faults out of those faults which were selected

for simulation (this number can be arbitrarily large, limited only by simulation time and

available computing resources).

The tool will also check the efficacy of the BIT (Built-in test) approach being used by

the designer in terms of its capability in detecting mission-critical faults.

2.2. Tool Structure

First, a brief description of the structure of the tool components is given along with their

interactions.

2.2.1. Kernel

The tool has three individual components with a simple dataflow, so that each component

can be used alone. Despite this fact, there is a need for the central design manager which

can control the dataflow and act as an interface between the user (who is designing the

application) and the tool. This interface can be called the Kernel. The kernel can be

thought of as the common database through which all the ug different tools can talk to each

other and with the user. Such a view is presented in Figure 2.2.

p. 14

KERNEL AS AN INTERFACE

Figure 2.2. The Concept of Kernel

p. 15

In this figure, two new elements are introduced. They are the VHDL library from which

the designer can choose components, and the other user specifications which may be used by

the kernel and/or tools. As an example, the user may want to specify whether the simulation

has to be carried out in the Max, Min or Typical mode. Other things which can be specified

by means of the kernel may be:

• Whether warnings are to be flagged.

• Should the attributes of the children be carried to the parent (i.e., inheriting attributes

from the components).

2.2.2. Fault Injector

Methodologies for determining, in a quantitative fashion, the effects of faults at different

levels of the system hierarchy, as far as mission requirements is concerned, are discussed

here. This will be achieved through a simulation approach whose applicability will depend

on the design level. Techniques that generate hardware failures in a statistical manner

and map these failures to the different levels of the system hierarchy are a part of the total

methodology. The statistical properties of the failures and the mapping could vary depending

upon the application task and the operating environment of the system. The fault injector

will perform the following functions:

• Parse the input VHDL description of the design and create superentities from the

VHDL entities to do the fault injection with stuck-at fault model.

• Find which faults to simulate depending on user specifications and component relia-

bility data.

• Direct the simulation.

p. 16

• Should be compatible with a fault simulator.

Dependencies of the Fault Injector: The tool function depends on the component

reliability database and on the statistical properties of the particular fault(s) the user wants

to simulate.

2.2.3. Criticality Detector

The function of the tool is to determine the criticality of the effects of the injected faults.

Based on simulation results, the quantitative effects of the faults on the system operation can

be compared to user-specifications indicating what is considered a critical operation margin.

This function of the tool will be performed using the following two steps:

• After getting inputs from the criticality specifications and the fault injector, the tool

compares the obtained output with the fault-free expected output. Criticality is de-

termined based on the error introduced by a fault versus an error margin that may be

acceptable to the user based on the criticality specification.

• If critical errors are detected, they are logged along with warnings which are issued for

potentially critical faults.

Dependencies of the Criticality Detector: The tool function depends on simulator

output, fault injector, and the user-specified criticality parameters.

2.2.4. Built-in Test Evaluation

Procedures for evaluating the effectiveness of BIT schemes when the system is executing

application code under faulty conditions.

p. 17

• Define BIT counters at each of the BIT monitoring points. These counters keep count

of various mission-critical and potentially critical faults in the system.

• Define two global counters, one for critical faults and the other for non-critical faults.

• After the simulation, observe the values of BIT counters to see if all critical errors have

been detected.

After the simulation pass concludes (or upon first detection of the criticality of the fault),

the values in the error counters at the BIT monitoring points can be added to one of two

global counters for each location. These two global counters keep a cumulative tally of the

error counts for the faults deemed critical, and for those that are found to be non-critical.

After all of the target faults have been injected and simulated, the global counters can be

used to order the candidate BIT sites in terms of their efficiency in detecting the faults

deemed mission-critical. The non-critical faults have their own set of error counters which

may provide useful information to the designer about the testability of the design, and

provide feedback as to where he may want to put testpoints for non-BIT tests.

Dependencies of the BIST Evaluator: Depends on simulator output and output

from criticality detector.

2.2.5. Interactions:

The interactions are fully explored in the chapter on tool implementation. A description of

the files produced and used by each tool is given.

p. 18

3. FAULT INJECTION

3.1. Objective

One of the most important components of the tool system described in Chapter 2 is the fault

injector, which may be based on fault injection techniques described in this section. The

objective of the fault injection is as follows:

Develops a technique that generates hardware failures in a statistical manner, and maps

these failures to the different levels of the system hierarchy. The statistical properties of

the failures and the mapping could vary depending upon the application task and operating

environment.

3.2. Proposed Fault Injection Mechanism

Based on the failure probability of a component (which can be computed from the MIL-

STD-217E data or estimated by the user), traditional FMEA techniques identify and analyze

failure effects using primarily a topological model of the system and first-order dependencies

among the components on the level of design hierarchy considered. We propose to extend

this approach and map it to our failure injector mechanism such that a simulation approach

can be utilized to determine the quantitative effect of the injected fault.

Whether or not the system is defined at a piece-part level of detail or at a higher level

of abstraction, the failure injection method must be applicable at all of these levels. Our

approach is to create a fault table for the VHDL-described system containing all of the

output ports of all entities used in the functional system. This table can be created by

parsing the VHDL description of the system and storing the output ports associated with

each individual entity within a table. These entries need to be classified according to the

signal type (e.g., whether they are single bits, multiple bit buses, integer representations

p. 19

of buses, enumerated types, etc.) because in VHDL, description signals can be of different

types. The next problem is to choose an appropriate fault model. Although some work has

been done in defining higher-level fault models based on a VHDL behavioral description [81],

it will be difficult to apply these fault models in a consistent manner. Furthermore, these

models may be of questionable value for our purpose, although for test generation purposes

they may be acceptable. Thus, we propose that at this time, the fault models be limited to

the following:

• Pin stuck-at values

• Bus at wrong value

We propose that a weighting scheme be applied to the fault population in order to

prioritize the fault injection process for simulation and analysis. We have identified several

possible factors which can be assigned numerical quantities, and can thus be used as weights.

In the following discussion, the objective is to find the weight Wi for each fault in the fault

population of the system. These weights are found as follows:

1. Failure rate A - The failure rate of a VHDL-described component can be used to

identify which components are the most likely to fail within the specified mission time.

These reliability data can be extracted from known piece-part reliability databases

such as those found in MIL-HDBK-217E, or any other known field data sources. These

databases associate a probability of failure with each component, say A,-. The value A;

is available for each component in the system, and from these values a weighting factor

is obtained. This weighting factor is applied to all of the applicable failure modes for

the specified component (e.g., all failure modes associated with a 74181 ALU would be

weighted by the probability that this component will fail in the overall system). The

actual weighting factor for the failure modes associated with component i is found as:

p. 20

n

where n is the total number of components in the system model. Note that the failure

modes are the ways in which the specified component can fail, and thus correspond to

the potential faults. Our concern is to find the likelihood of these failure modes. Also,

it is noteworthy that the Ats must be expressed in the same units. So after applying

this factor, all the failure modes of a specified component have the same weight, u;,-.

2. Failure mode probability- Given that component i fails, some reliability databases

may contain a conditional probability based on the applicable failure modes of the

component. For example, if the 74181 ALU is selected for fault injection, then there

may be conditional probabilities assigned to its individual failure modes. As an exam-

ple, the probability that a failure in the ALU results from an error on the Cout pin

may be 0.1, while 90 percent of the observed failures for the ALU result from the 4-bit

output bus. Obviously such probabilities are of direct use to us. Assuming that for a

specified component the weight as found in the previous step (from the A,-s) was W{.

Then if we also have the failure mode probabilities for it, say /?;, the weight Wi for this

mode is further modified, i.e.,

w'i = Wi * ßi

Here w\ is the new weight for the failure mode (or the fault). For the purpose of this

report we are interested only in stuck-at faults.

3. Fanout of a signal may be weighted accordingly. If an output port of a component

fans out to more than one location, the effects of a failure on that output port are likely

to affect more than one destination port. Consequently, any faults injected on that

p. 21

port will propagate to more than one unit and will be more likely to result in a critical

error (since the multiplicity of faults may occur). A rough guess for an appropriate

weighting factor would be a factor of two for every fanout point (i.e., if a signal has a

fanout of three, then the weight is 23_1 = 4).

4. Observability - One factor which could be used as a negative weight would be the

observability of the outputs of a given component. This score should be used only as a

small weighting factor. Its purpose would be merely to give a higher priority to output

ports which are deeply embedded in a design where the fault effects might be difficult

to detect.

5. Control/datapath functions - A higher weighting factor may be desirable for control-

oriented and/or state machine functions rather than datapath-oriented faults. Because

the likelihood of the system being in an incorrect state when a critical processing cycle

is required is more critical than a small miscalculation in the datapath, a higher pri-

ority may be wanted for these function types. As a default, these are the faults which

might get the highest priority of all possible faults.

After creating the necessary weighting factors and applying them to the fault occurrence

sites, an ordered list of these sites will be identified. Some of the properties of the fault

injection should be:

• Faults can be injected based on user-defined triggering conditions.

• Bus-transfer faults can be injected based on the functional difference fault model.

• Interconnect-level faults can be modeled using stuck-at or stuck-opposite values.

• Development of an error tracing mechanism would allow the error effects to be traced

through the system, thereby allowing for the identification of potential BIT locations

p. 22

and the identification of equivalent faults which can be removed from the list of failure

modes.

Two types of error assumptions should be used to adequately model system failures:

1. Faults occurring in the interconnect between two or more components (or between a

primary I/O and a component)

2. Faults occurring within a design entity which may result in more than one error being

present at the entity's output

Faults will be injected by modulating the output data being passed through the ports of

an entity and may be assumed to be permanent.

The system will first be simulated within the VHDL simulation environment in order

to determine the fault-free response of the system using the specified input vectors and/or

application code running on the system test data. Because we are interested in determining

the criticality of the system response, the simulation response for each output must be saved

for future comparison with the responses of the faulty system. Furthermore, because of the

BIT evaluation and recommendation facility, it will be necessary for the designer to identify

the candidate nodes for BIT resource allocation. This is because we will also need to save

the "fault-free" response at the monitoring nodes so that we can determine fault criticality

at these nodes during the fault-injected simulation runs. As is the case with the system

outputs, a signal trace mechanism needs to be used to store the simulation responses of the

BIT candidate nodes during the fault-free simulation pass.

Faults will be injected within the VHDL description of the system by defining a super-

entity which contains the original entity as an instance (Figure 3.1). The output ports of the

original entity will be Exclusive-ORed (see discussion below) with a MASK value generated

by the test bench (though described later, here it can be taken to mean that part of system

p. 23

Predecessor
Design Entities I

N
P
U
T

P
O
R
T

Enable I
Mask Vector

Data Modulator

VHDL Design Entity

-Behavioral Level
-Structural Level
-Dataflow Level
-Abstract Level

O
U
T
P
U
T

P
O
R
T

Hierarchical Entity with Error Injection Mechanism

Successor
Design Entities

Figure 3.1. Fault Injection Model

p. 24

which generates MASK values for fault injection). Several different scenarios could occur for

the fault injection:

1. The MASK value is permanently fixed (based on the fault model selected for injec-

tion) and is applied permanently to the super-entity (e.g., it is always enabled). For

permanent stuck-at type faults, the entity output and the fixed MASK value should

be OR'd for a stuck-at-1 or ANDed for a stuck-at-0 fault. This type of fault injection

can be used to model board or backplane interconnect faults where a constant signal

value may occur as a result of a fault.

2. If the particular fault occurs in a cone of logic which feeds an output port of an entity,

the failure is not always present. This can, again, be modeled using a fixed MASK

value which is exclusive ORed with the entity output whenever the maskENABLE

signal is set to one. Thus, we have the following behavior in VHDL for a fixed MASK

value

if(ENABLE == TRUE) then

Dout <= entity_out ' MASK;

else

Dout <= entity_out;

The intermittent nature of this type of fault is defined by the probability density

function used for specifying the value of the ENABLE signal. Based on a user-defined

pdf (i.e., binomial, exponential, log-normal, etc.), a random deviate can be generated

from the pdf and be used to specify the value of the ENABLE signal. Thus, this will

cause specific failures to be injected within the simulation at times specified by the pdf

chosen beforehand.

3. The mask value is variable and is recomputed during each clock cycle of the system

simulation. As in Scenario 2, the injection of failures in this manner makes use of

p. 25

a probability density function. Based on the results of our experiments with various

combinational and sequential off-the-shelf components, the number of faults occurring

during a given simulation clock cycle have roughly a Poisson distribution. Most of

the time, the injected fault within a component is masked and does not produce an

error at the output. The next most frequent occurrence is for one error to occur on

the component output. From a user-specified pdf, we can generate a random deviate

during each clock cycle which can be used to specify the number of bit errors in an

output bus for the "bus at wrong value" fault model. The number of errors in a bus

must then be mapped to specific locations for each cycle. For example, suppose we

generate a random deviate to inject two bit errors into a 4-bit output bus. The errors

must be mapped to specific bits which can include any of the following cases (the

following are the mask values where 1 in a bit indicates that the error is to be injected

at that bit position),

(a) 0011

(b) 0101

(c) 0110

(d) 1001

(e) 1010

(f) 1100

If no information is available about the grouping of errors (which is probably the

nominal case), then a uniform distribution will be assumed, and each one of these six

cases will be equally likely to occur. However, if we can make use of information from

a co-variance matrix that is created when a gate-level fault injection of a component is

performed, then we may know beforehand that, say, bits 2 and 3 are likely to be faulted

together, whereby bits 0 and 1 are completely independent and are unlikely to both

p. 26

be in error during the same clock cycle. However, in most cases, it is anticipated that

the functionality of the entity will be specified using either a behavioral or dataflow

description, and the structural information needed to determine the covariance of the

outputs will not be available.

In this scenario, the test bench must assume the responsibility of calculating the mask

value on the fly during simulation. An alternative approach would be to generate the

mask values and merge them with the incoming system data stimulus.

Upon injection of a fault, the simulator will be invoked with the output responses being

monitored and stored for later use in the criticality analysis phase. Furthermore, it is nec-

essary to keep track of the system responses at all of the candidate BIT locations that were

identified previously. If the system does not contain rollback or instruction retry (which

would cause the faulty simulation to be out of step with the fault-free simulation run) then

it may be possible to build in the BIT evaluation facility within the simulation run. A com-

parator can be generated for each of the candidate BIT monitoring points whose function is

to compare the value produced in the current clock cycle of the faulty simulation with the

same cycle of data extracted from the fault-free simulation. In this manner, the fault-free

data are essentially stored in an entity whose address is synchronized with the current clock

cycle. If the comparator flags a mismatch between the two data streams, then it can enable

a counter module which keeps a running total of the fault coverage at that location. The

comparator and counters can be automatically generated by the test bench based on the

number of bits in each monitoring point, their location, and the number of clock cycles that

will be simulated in each pass.

3.3. Some Experimental Results

In order to examine the validity of the fault model suggested, some experiments were carried

out. Several bus-structured MSI circuits were modeled at the gate level and subjected to

p. 27

O
ü

o

u

0> _>

E
o

30000.0

28000.0

26000.0

24000.0

22000.0

20000.0

18000.0

16000,0

14000.0

12000.0

10000.0

8000.0

6000.0

4000.0

2000.0

Cumulative Distribution of Bit Errors Observed
Results of Stuck-at-0 Fault Injections on Various MSI Parts

0.0

-
1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1

'L -

_\ B - - a 74283 4-bit Adder
- \ A- - - * 74181 4-bit ALU

\ 0— 0 74170 4x4 Register File

r \

\

• . 74377 Octal D-Latch -

-\ \

\
\

\

A

-

[l \ 1 \

\ \ \ \
O \ \ ■

- -
- \ \ N -

,? \ \ \ \ -

-
\\ \ ^
\ \ V \ \ \ X

\\ V -
- \"\ \ \ N ■

<

«^ ^\ \ v

i , ^ r = 1- T= -t ■—» ■ A ■ 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Number of Errors Observed in the Output Bus

8.0

Figure 3.2. Statistical Fault Generation

p. 28

exhaustive single stuck-at faults using a near-exhaustive set of vectors. The cumulative

distribution of errors at the device outputs, as well as the cumulative total of the number of

erroneous bits was collected. The results of such an experiment are depicted in Figures 3.2

and 3.3.

The results obtained suggest that in absence of any other information, the fault model

can be used in a statistical model to generate faults. The statistical parameters can be

varied, thereby leading to the error occurrence following a defined probability distribution

function. These faults can then be used to simulate the system. The implicit assumption in

this case is that the system cannot be exhaustively simulated, in general, due to computer

time constraints. From Figure 3.2 we see the number of bits that are erroneous follow the

classical Poisson distribution. Also the errors are uniformly distributed over the output bits

which are related (i.e., a single bus). Thus, bus-transfer errors can potentially be modeled

using statistical properties for error injection.

3.3.1. Statistical Models

As hinted, various models can be used to generate the faults for the proposed fault models,

namely stuck-at and bus-at wrong value. Hence, supported by the experiments performed

at RTI, there is reasonable evidence that it is better to generate errors following a statistical

model, than random error generation not adhering to some specific statistical process. To

this end, there is a need for the tool to provide a mechanism for incorporation of a statistical

process for fault generation. The processes which have been identified have the Poisson

and binomial distributions. One of these can be the default model. These two models are

considered to be of special importance because they seem to fit most of the experimental

data obtained during the course of this work.

p. 29

30000.0

Cumulative Distribution of Bit Errors Observed
Results of Stuck-at-1 Fault Injections on Various MSI Parts

o
ü

o a

o c
<V

cr

>

=1
o

0.0
• A-

^
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Number of Errors Observed in the Output Bus

—♦
8.0

Figure 3.3. Statistical Fault Generation

p. 30

3.4. Benefits of the Proposed Approach

There are some distinct benefits from the proposed approach:

• The sensitivity of the system to component failure modes can be determined quanti-

tatively.

• The approach is applicable to multiple levels of design abstraction.

• The approach provides some meaningful insight into error manifestation sites in the

system which can be used for the allocation of BIT resources to maximize their effec-

tiveness.

• The same methodology can be used to verify BIT effectiveness once BIT modules have

been added to the design.

• The effects of faults on a combined hardware/software model can be determined.

There are some issues, however, that need to be further investigated. For example, when

should error injection be initiated during a simulation run? This will need to be related

to the mission times of interest and/or the life-cycle of the system. Also a provision to

incorporate an alternative fault model needs to be provided as shown in Figure 3.4.

3.5. Test Bench Generator

All previous ideas can be used to make a comprehensive test bench generator. It is so called

because this tool is responsible for deciding which faults to simulate (i.e., which tests to run)

and also for generating the associated mask values. It will automate the generation of files

required to perform fault injection and simulation. The test bench is the top-level design unit

required to perform both of these functions in the proposed tool environment. Conceptually,

p. 31

Accomodating Other Fault Models

Select Component
for Fault Injection

Failure Data-
base

Select Failure Mode

Substitute the component model
for the new one.

Use the mask if stuck-at fault
model is used.

Figure 3.4. User Specified Fault Model

p. 32

the test bench is a software implemented breadboard. As with traditional breadboards, the

circuit components are wired together, the stimuli applied, and the responses are collected.

All of the flexibility of the traditional breadboard is present. In addition, as with the

case with fault injection, there is an additional facility of replacing components with their

faulty counterparts and seeing what effect the fault or faults have on the circuit on this

software implemented breadboard. The default model being "stuck-at-0 or 1," the faults are

equivalent to tying the relevant nodes to ground or the supply voltage.

As stated previously, the test bench has two distinct functions, one of automatically

generating faults, and injecting these faults into the circuit by one of the methods which

have already been described. The fault list can be prioritized depending on the number of

constraints imposed by the user. The tool uses a prioritized list of faults out of which it

picks the specified number of faults for simulation. It injects these faults, simulates them

and finds whether they are critical or not. In case of lack of information on actual fault

weights, one could use a probability density function (pdf) of fault arrival to generate faults

in a statistical sense. With a user defined pdf (or default pdf if there is no user denned pdf),

the faults are injected one by one until the number of faults exceeds a user defined number.

There is clearly a need to separate the two functions of the test bench generator. This

is so because both fault injection and fault simulation can be done in several ways. By

separating these functions the user can have more choice to realize each of these functions

in the desired way. The first function of fault list selection and fault injection can be done

in several ways. An approach to performing these functions is described in the next section

of this report.

3.5.1. The Fault Selection and Injection Test Bench

The elements needed to configure the bench are as follows:

p. 33

• The entityjiame identifier provides a device name for the model. For example an

8-bit register might have an entity name of REG8. This identifier is supplied by the

user during the program initialization.

• The Fault Selector to be developed will parse all the entities for the input and the

output ports. With this information, the stuck-at model can be used to finalize the

fault list. Also after parsing, the output will be sent to a file called parse_output. This

file has a column for the signals, a column for the entity name the signal corresponds to,

and a column indicating whether the signal is input or output. The function of finding

the weights for the faults can be performed during this parsing pass. Based on our

previous discussion, there are certain weights which can be established by parsing the

VHDL description of the system. For example, take the case of the weight established

using fanout of a particular signal. This will be known from the VHDL description

which indicates how many times this signal is directly or indirectly assigned to some

other signal. Because of the available information, this task can be handled at compile

time. This special parsing pass is needed for developing a prioritized fault list and the

software for that has to be developed.

The output file for developing prioritized fault list of this process may have the format

of Table 3.1.

Table 3.1. Initial File Format for Fault List

Port_name Port-type Entity Fault Weight
Cin IN ADDER s-a-0 2

s-a^l 1.3
A IN MUL s-a^O 0.3

s-a-1 4.1

p. 34

After the required information is extracted from the user-given system description,

there may be additional information available for the tool to use. As discussed previ-

ously, this information may be in the form of a reliability database for the components

which make up the system. Such information must be used to refine the fault weights

and, in this case, the output file from the previous stage can be used as input to this

process. This additional information is optional, and a fault list will be established

even without it. After processing this step, the output is again a file in the same format

as before, but with the modified entries in the weight column. At this point (assum-

ing that the user has already specified, through the kernel, his choice for faults to be

simulated), the fault selector can proceed to select faults from the file and present it

to the fault injector. For example, if the user specified only two faults to be simulated,

after selection the file may have the format of Table 3.2.

Table 3.2. Format for Fault List in Single Fault Mode

Fault No. PortJiarae Port-type Entity Fault
1 A IN MUL s-a^l

2 Cin IN ADDR s-a-1

The Fault Injector is the test bench unit which controls the mask values, used for

the fault injection process. Depending on the input from the fault selector, the injector

injects the faults in the system by controlling the mask and enable values. Depending

on the mask scenario being used (i.e., one of the three described in section 3.2), the

fault selector injects a fault every simulation cycle and invokes the simulator. It should

also be possible for the user to inject several faults in a batch mode. The easiest way

to do that would be to point out whether the fault injector should run in the Single

Fault or the Multiple Fault mode. This can be enquired by the kernel, and if the user

selects the latter, the kernel should prompt the user to indicate which faults should be

p. 35

considered. This can be done by showing the fault list to the user and allowing faults

to be selected together by clicking on them in a window. Continuing with our example,

if the user chose to consider both the faults simultaneously, the file available for fault

injection might be formatted as shown in Table 3.3.

Table 3.3. Format for Fault List in Multiple Fault Mode

Fault No. Port_name Port-type Entity Fault
1 A IN MUL s-a^l

Cin IN ADDR s-a^l

• The test cases are the set of input combinations for which a designer might want to

test the design under consideration. The simulation time, or what is also referred as

simulation cycle in this report, depends on the number of test cases run. After this set

of inputs has been exercised, the tool will inject the next fault in the list, and so forth

until the chosen fault list is exhausted.

3.5.2. The Fault Simulation Bench

Under this section, the issues related to the simulation are taken up. With the typical test

cases and the fault from the fault injector, the simulation test bench runs the simulation.

It is possible that the user has only a few test cases for which he has already simulated the

system and stored the response of the system. Alternatively, the user may want to change

the test case for each simulation. Depending on which of these the user chooses, at the very

outset of fault injection the user must specify whether the system should do the simulation

for both the faulty and fault-free system in each simulation cycle or should just simulate

the faulty system and compare the response with the stored responses. Obviously, with the

stored responses there will be a saving in both time and effort. It also means that the user

loses the flexibility to change the simulation inputs in each simulation cycle. That is not a

p. 36

very big constraint in most situations because the designer has knowledge of the test patterns

beforehand.

• The simulator is a VHDL simulator which can take the VHDL description (augmented

with superentities) and proceed with the simulation. A commercially-available VHDL

simulator can be used in this case. Before passing the circuit netlist to the simulator,

those I/O signals which are specified as stuck-at by the mask values must be suitably

modified.

• The good model output signals transfer the reference signals for the comparator

to compare against. As already explained, these are the outputs of the superentities

which the tool has constructed around the entities but no mask is applied, meaning

that their values come out unchanged. These signals can be bits or buses, but in both

cases the comparisons are performed at the bit level.

• The faulty model input-output signals are the results of the simulation with the

injected faults in the model and are the other input to the comparator. There can

be two modes of simulation: the faults can be injected one at a time, or as a group

where a parameter fault-number specifies the number of faults injected. A fault type

file would be created at runtime that would specify fault number and the type of fault

injected.

• The comparator output signals convey the result of individual comparison oper-

ations. These signals can be used to determine whether the injected fault is critical

or not. Criticality issues and how the comparison should be performed along certain

guidelines is elaborated upon in the next chapter.

p. 37

4. CRITICALITY ANALYSIS

4.1. Determination of Fault-Effect Criticality

Upon fault injection and simulation, the comparison will be made between the outputs of

the faulty and the fault-free system under consideration. However, it is up to the user to

define a quantitative threshold for fault effects beyond which a fault is deemed to be a

mission-critical fault. Furthermore, the user will define when the comparisons take place

during the fault injection process (i.e., after every clock cycle during simulation, or at the

end of a simulation task). An assumption may be that the fault-free and faulty responses

are compared every simulation step, however, other requirements may be imposed according

to the system designer's view of the system function. For example, if the design under

consideration is a FFT processor, the requirement may be to determine criticality based

on the amount of error introduced by an injected fault in the final output only and not

necessarily in intermediate results. This implies that the determination of criticality is made

at the time of the comparison of system response at times specified by the user.

Figure 4.1 shows the basic methodology which incorporates the various phases for per-

forming quantitative FMEA, including the criticality evaluation phase. It is assumed that

the system simulation is complete and results are available and stored before comparisons

are made to determine the criticality of an output. This is the default mode assumed for

any system.

The criticality evaluation phase occurs after the simulation. Its inputs are the criticality

specifications from the user and the simulation output from the simulation tool (fault-free

output and system output in presence of injected faults).

p. 38

Failure
Injection
Mechanism

System Design

Simulation

Finding Critical
Failure

Resource Allocation
for BIT

Reconfiguration

BIT and
Reconfiguration
Requirements

BIT and
Reconfiguration

Evaluation

Figure 4.1. Basic Methodology

p. 39

4.2. Methods for Criticality Analysis

Traditionally, the methods used for criticality analysis have not used simulation and have

relied more on the usage of reliability models. These models require the user to define

the criticality threshold for a component, system, subsystem, or a failure mode. Then the

tool (using a database containing failure rates of components and failure modes) explores

the interactions among the components from a topological point of view. Its output is

traditionally described as the criticality number, and is indicative of the criticality of the

failure mode in question. The disadvantage of this approach is that the model uses a great

deal of data that are subjectively input by the user, and therefore the results are heavily

skewed by the subjective judgement of the user.

In the simulation approach, the user specifies the failure to be injected and also the

threshold for the criticality in terms of the quantity of error introduced by the injected

failure, and the tool decides whether the failure manifests itself as critical to the system

function. As described in the last chapter, the fault injection can be automated so that a

representative fault set can be input. In most cases, the designer may be assumed to have a

good idea of the types of faults that the system needs to be subjected to.

These two approaches are depicted in Figure 4.2. Also shown are the input requirements

for each method. The traditional FMEA concept requires the knowledge of failure rates of

various components (or VHDL entities in the simulation approach). The failure rates may

have to be associated with a particular failure mode (i.e., for each type of failure of the

system, the probability of that failure needs to be known). Obviously, this can be difficult

for a large number of components. Still more difficult to know are the modification factors,

such as the environmental modification factor (Ke discussed later in Section 4.6). Being

unable to determine these probabilities, the user might be forced to inject some probabilities

based on estimates that may not reflect the behavior of a component in a statistical sense.

p. 40

In the simulation approach, a vehicle such as VHDL or any other structure specifying

tool is needed as a vehicle for simulation. The VHDL model is the preferred one for such a

tool, and this is the model which can be used to inject the faults and simulate the system.

What is meant by quantized user specification will be further elaborated below.

CRIT1CALITY ANALYSIS

FMEA - CONCEPT SIMULATION

FAILURE RATES

FAILURE MODES

MODIFICATION FACTORS

SIMULATION
VEHICLE
(VHDL)

GENERAL
MODEL

QUANTIZED USER
SPECIFICATIONS

Figure 4.2. Criticality Analysis Methods

4.3. Quantized Specifications

The simulation of the system, including failures injected, produces results which have to

be compared to user-defined criticality thresholds to determine if the injected failures are

critical for the system mission. This comparison needs to be done with some guidelines

p. 41

given by the user as to how the tool should determine whether a fault is critical or not.

A technique needs to be developed that gives maximum flexibility to the user regarding

how the criticality data may be specified. Criticality is manifested at the outputs of a

system, subsystem, or component. Also, the criticality specifications depend on the type

of system at hand. The term quantized specifications means that, with the help of system

attributes, the user can completely instruct the tool as to what constitutes criticality for a

given system mission. Figure 4.3 illustrates an example of attributes that may be used to

perform criticality analysis. The aims in defining these attributes will be:

• To unambiguously define the system operational characteristics and the way they may

affect the determination of criticality. The system characteristics to be considered may

be synchronous or asynchronous operation, inclusion of rollback capability, etc.

• Define how the the comparison of the fault-free and faulty system response will be

implemented. The comparison between the faulty response and the fault-free response

might be done per clock cycle or every nth clock cycle where n is specified by the user.

Another possibility is that the comparison is performed using the RMS value of the

output for a user-specified number of cycles.

• Capture the diversity in the specifications by the users. The presence of transients

and the like have to be incorporated as fields before being used to determine critical

behavior.

Before the criticality tool proceeds to determine the failure effects, it must account for

the type of components used in the system and the type of signals it is handling, in order

to produce meaningful results concerning the criticality of the injected failures according to

user requirements.

p. 42

FIELDS

COMPONENT FIELDS

SYNCH. OR ASYNCH.

ROLLBACK ?

■ SAMPLING FREQ.

RELIABILITY DATA

SIGNAL FIELDS

CRITICAL ?

TRANSIENTS ?

NORMAL VALUE

TOLERANCE

ABORT OR
WARNING

O/P TO BE
CONSIDERED
SINGLY OR
WITH OTHERS

DEFAULT VALUES TO BE PROVDDED EVERYWHERE.

Figure 4.3. Fields for Specification

p. 43

4.4. System Attributes Needed for Performing Criticality Anal-
ysis

This section provides a discussion on some of the attributes which the criticality tool will

need before it proceeds with the analysis. Since the objective is to produce a tool that is

general, there are a lot of attributes to be considered to take as many systems as possible

in consideration. Normally all these attributes will not be needed and will be set to their

default values.

The concept to be considered first is that of sampling period. It is an important parameter

because this period determines where the comparison will take place between the normal

expected data and the data returned by the simulator under fault injection. It must be

noted, that this comparison determines whether the injected faults have been critical to the

system or not at the end of a specified sampling period. By default, this period will be set

to the clock cycle for synchronous systems, and at end-of-event simulations for asynchronous

ones.

+ I I I I I I
Figure 4.4. Sampling Period Can Vary

If TRANSIENTS (events that occur out of synchronization with the system clock to

which all other transitions are synchronized) are to be taken into account (i.e., if the

output can be critical due to the transients) then the sampling period may need to be

p. 44

decreased by the specified amount. By specifying this attribute the user decreases the

sampling period to capture transients that may occur in short time intervals. Figure

4.4 shows how an otherwise smooth signal might have transients. On the right, the

sampling period is shown to be larger because the user expected the signal to be

smooth. On the other hand, if a transient was expected, the user might decrease the

sampling period (as on the right of the axis) to examine the system fault effect at the

time of the transient.

The system can have the default value of the sampling frequency, but only in the case

of SYNCHRONOUS systems. Otherwise the sampling frequency must be specified.

Even in the case of synchronous system sampling frequency may have to be specified.

One way to specify the sampling frequency, in the case of asynchronous systems, can be

to tie it with a particular output. For example, in a system implementing a handshake

protocol, the user might want the outputs to be compared when the acceptance from

the remote party arrives.

At the beginning of the process, the user could define which outputs need to be con-

sidered for criticality evaluation, and the aspects of how to measure criticality at a

given output. This provides the user the capability to consider internal system nodes

(in addition to input and output nodes) as well.

If the user is interested in examining an output taken singly or an output combination

(e.g., sum of two outputs), the COMBINATION OF OUTPUTS needs to be

specified.

Since an output might never be critical, or it might manifest itself as critical after a

long latency, or it might be known to be critical, a field to keep track of these three

possibilities is needed.

A field is also needed to indicate whether the system has ROLLBACK points, or

p. 45

not. This attribute will help the faulty and fault-free simulation to stay in step. This

means that for systems that have a built-in, fault-checking mechanism; if the system

rollbacks upon detecting an injected fault, fault simulation will keep in step with the

rollback, and normal expected value and faulty values will be compared only if the

fault checking mechanism approves of the rollback values and the system is ready to

move to the next stage. Note here that a complete simulation model is assumed, which

gives the tool access to the flag which determines whether the system is to be rolled

back or not. This implies is that the tool has access to both the external system and

the internal system nodes.

• The user has to specify the TOLERANCE (i.e., margins of error) acceptable before

the output becomes critical. Here arises the issue of whether the user might be inter-

ested in the average value, per sample value, or the RMS value of the output to be

monitored. Depending on the user requirements, the tolerance needs to be appropri-

ately defined.

• The NORMAL value to be used as a basis for specifying the tolerance must also be

specified. Normally this is the value obtained from the fault-free simulation.

• Degree of criticality. There might be a need to warn the user of the effect of a

particular fault if it produces an error that is within a specified margin of the normal

value and to declare it critical if it exceeds that margin.

So we have a final picture of the needed attributes in Figure 4.5.

4.5. Attribute Association

An issue that needs to be addressed is how all these attributes are combined to form a

comprehensive database. Some of the attributes, such as the system being synchronous or

asynchronous, are derived from the system description. Other attributes, such as whether to

p. 46

ATTRIBUTES NEEDED TO SPECIFY CRITICALITY

NORMAL VALUE
SAMPLING PERI

DEGREE OF
CRITICALITY

TOLERANCE

COMBINATION OF
OUTPUTS ?

CRITICAL NON-CRITICAL
RMS PER

SAMPLE
WARNING

AVG

Figure 4.5. Attributes to be Specified for Criticality Analysis

p. 47

consider the combination of outputs for criticality evaluation, can be neither associated with

any of the components, nor with the system. Others, such as tolerance, are associated with

individual signals. The degree of criticality is also associated with individual signals and it

seems reasonable to associate the system attributes with the signals itself. In this case, the

user may have to identify signal values of which the system will need to keep a record. These

are the signal values the system will trace through the simulation.

After marking out signals of interest, the user needs to attach to these signals the attribute

values that are characteristic of the system and the mission. Not doing so would lead to the

use of default values. These default values may be tabulated as shown in Table 4.1.

Table 4.1. Default Values for Signal Attributes
Attribute Default Value

Synchronous/Asynchronous Synchronous
Sampling Period Global Clock Cycle
Combination of Output Individual Signals
Rollback Present NO
Degree of Criticality No Warnings

So the conclusion is that the attributes be attached with the signals. They can derive

the relevant attributes such as synchronous or asynchronous from the components, of which

they are a part.

4.6. How Simulation Output Can Contribute to Theoretical Eval-
uation

In the FMECA (Failure Modes and Effects Criticality Analysis) procedure, all the steps for

FMEA are performed. In addition, criticality analysis is also performed. Criticality analysis

is done by combining the occurrence of failure modes and the determination of the impact of

a failure mode on the reliability of the system. As discussed before, there exists the concept

of the criticality number which characterizes the failure effects on a system function using a

p. 48

number of parameters which are often difficult to determine for real systems. In traditional

FMECA analyses, subjective assignments are made to the values of unknown probabilities.

In the FMEA literature [78, 79, 82], the criticality number is defined as:

f2a*ß*i*T*Ka*Ke

where,

A = Fraction of total failure rate attributable to each failure mode.

ß = Conditional prob, that if failure mode occurs then the critical failure will occur.

7 = Generic failure rate for item (known).

i = Specified failure mode.

n = Total number of failure modes for component.

Ka and Ke are environmental failure rate modification factors and T is the operating

time.

The values of A, ß and 7 are evaluated from the data typically available from the field. If

such data are unavailable, the analyst provides the missing values based on experience. Thus,

a great deal of subjectivity is introduced in the determination of the criticality number. The

proposed tool can reduce such subjectivity by providing the ß values for various components.

Since the tool simulates the failure modes and finds whether those failure modes are critical,

determination of ß for a given failure mode becomes a deterministic computation, which can

be used for FMECA analysis.

4.7. Summary

This section charts the steps involved during the criticality detection phase. An overall

picture of this phase is presented in Figure 4.6. After defining which signals are to be traced

p. 49

NORMAL VALUES
AND TOLERANCE

'

VALUE RETURNED
BY SIMULATION^

COMPARATOR
FAULT CRITICAL
OR NOT ««^

^^

Figure 4.6. Criticality Detector as a Comparator

p. 50

by the tool, the user lets the simulation run. As the simulation progresses, the results are

continually stored for future comparison by the criticality detector. The sampling period

attribute helps the tool decide what results are to be stored, and when. The preferred

scenario would be that the simulator continues to work for the duration of the sampling

period, at the end of which it stops and stores the results. The same procedure is carried

out both for the faulty and the fault-free systems.

The results are stored in two logfiles. One logfile is used to store the result of the faulty

simulation, and the other for fault-free case. The format for such a file can be of the form

shown in Tables 4.2, 4.3.

Table 4.2. File Format for Fault-Free System Logfile

Time signal 1 signal 2 signal 3 signal 4+5
10ns 2 3 1 .5

20ns 2.5 3.2 1 .5

30ns 2 3 1 .5

40ns 2 3 0 .9

Table 4.3. File Format for Faulty System Logfiles
Time signal 1 signal 2 signal 3 signal 4+5
10ns 2 3.2 1.1 .5

20ns 2.5 3.2 1.0 .4

30ns 2 3.2 1.1 .6

40ns 1 2.2 1.1 .5

As shown in the tables, the logfiles chart the progression of values on the specified nodes

as a function of the time. The values placed in the files are governed again by the attributes

the user specified for the criticality phase. For example, they might be RMS values or, as

shown in the tables, one of the columns might be a combination of signals rather than being

p. 51

just a single signal. These logfiles can be updated after each simulation cycle, and later

these values can be fed to the comparator which determines if and when the fault became

critical. If the tool is operating in one step mode (i.e., stopping after each simulation cycle

to determine whether the fault is critical or not), then as soon as the criticality is detected,

the fault can be flagged. As an example from above tables, at 40ns the sum of signals 4 and

5 is 0.5 in the faulty circuit and 0.9 in the fault-free one. This might constitute a critical

error. Still the tool may go on to finish the total simulation and do all the comparisons at the

end, when it will find that first critical error occurred at 40ns. Alternatively, the simulator

may be set to abort at the first instance of the critical error (one step). In one step, the

comparison is carried out every simulation cycle.

p. 52

5. BIT EVALUATION

The BIT evaluation tool will help the designer assess the efficacy of the BIT resources to

meet system requirement. This will be done by determining the number of critical faults

that the BIT detects. In Section 4.7, the concept of logfiles for storing the system response

under faulty and fault-free conditions was introduced. This concept can be extended to BIT

evaluation.

5.1. BIT Evaluation Approach

Since a complete VHDL model is input to the simulator, when the criticality detector detects

a critical fault, the proposed tool can pinpoint both the nature and the location of the fault

because the tool itself injected the fault. The objective of BIT assessment is to determine

whether the fault is detected by any of the BIT schemes being used. This task will be

performed by the BIT evaluation facility. After the simulation of each fault, the status of

all BIT points together with the internal simulation data is stored, and then checked to see

whether the BIT was able to detect the injected fault. So while simulation is in progress, an

extra logfile needs to be maintained. This logfile captures the changes in BIT points as the

critical errors are identified.

After a simulation pass concludes, or upon first detection of criticality of a fault, the

values of the error counters keeping track of the BIT monitoring points can be added to

one of two global counters. These two global counters will keep a cumulative tally of the

error counts for the faults deemed critical, and for those that are found to be non-critical.

After all of the target faults have been injected and simulated, the global counters can be

used to assess the candidate BIT schemes in terms of their "efficiency" in detecting the

faults deemed mission-critical. The non-critical faults have their own set of error counters

which may provide useful information to the designer about the testability of the design and

p. 53

provide feedback as to where test-points may be placed for non-BIT tests. A logfile associated

with the BIT monitoring points might be of the type shown in Table 5.1. This file may be

constructed simultaneously with the other logfiles, which record the values of specified signal

points. When the signal values are written in those files, the simulator updates the status

of the BIT points. If any of the BIT points have a valid flag a 1 is kept in the corresponding

point in the array to depict that the BIT in that point has been able to detect the error.

Table 5.1. File Format for BIT Logfiles

BIT_POINTl BIT.POINT2 BIT.POINT3 BIT_POINT4
Faultl 1 0 0 0
Fault2 0 1 0 1
Fault3 0 1 0 0
Fault4 0 0 0 0

As can be seen from the table, all the faults except fault 4 are detectable at one or

more of the BIT points. This implies that the used BIT scheme is not sufficient to detect

all the errors due to the injected faults. However, it might be the case that the criticality

detector finds that fault 4 was not critical according to the user's requirements. Then the

system depicted above detects all the mission-critical faults (if any of the other faults are

critical). Similarly, from the same table we see that if the fault set is limited to these 4 faults,

then BIT_POINT 3 is redundant, because it does not detect any of the injected faults, and

therefore it may be removed. Such tradeoffs can be explored after all the information has

been gleaned and formatted for the criticality detector (comparator).

At this point, it is assumed that the critical errors have been identified, and a log of

those errors has been kept during the simulation phase. While the simulation was being

performed, a record was kept indicating where the critical errors occurred and whether they

were detected by the BIT structures which were specified in the design. This can be thought

of keeping a table of critical errors which has three entries in it:

p. 54

• The injected fault, which resulted in a critical error.

• The value of the critical error.

• The BIT resource that detected the error.

It is possible that no BIT resource was able to detect a critical error. In that case, a new

BIT resource has to be allocated if it is desired to detect all mission-critical failures (i.e., as

in the case of INEWS system).

It must be understood that the recommendation here is to intertwine this step with the

other phases because all the ground work for this phase is done during the simulation and

the criticality analysis phase. It is during the simulation that all the data are collected to be

collated afterwards. It is during the criticality analysis phase that the logfiles are generated.

These logfiles are the ones on which the BIT evaluation phase will act and generate the

measure of the efficacy of the BIT. It must be noted that, until now, only one measure of the

efficacy of the BIT has been discussed, namely its capability to detect all the mission-critical

resources. There can be other tradeoffs the designer might like the tool to evaluate. These

will also be discussed here.

The structure suggested is shown in Figure 5.1.

5.2. BIT Measures

The initial impetus for the development of BIT techniques was to reduce the testing difficul-

ties encountered during component production screening. As designs become more complex,

with high logic to I/O ratios, the economic benefits of self-test become accentuated at both

the chip and system levels. Although system-level, built-in self-test appears to be a promis-

ing solution to chip testing and system diagnosis problems, it is not without its drawbacks.

Four primary disadvantages include:

p. 55

SIMULATOR CRITICALITY
DETECTOR

BIT
EVALUATION
FACILITY

' 1
v 1 1

D AIBH Cl C2

D: Interfaces with simulator to find out whether the error was
detected by the BIT resources or not.

AIBH: This is optional and if present can help the designer insert BIT.
Cl: Interfaces with Criticality detector and keeps count of critical

errors.
C2: Also interfaces with the criticality detector and keeps count of non

critical errors.

Figure 5.1. The BIT Evaluation Tool

p. 56

1. Additional I/O pins and hardware overhead required.

2. Decreased reliability may be possible due to increased number of components in the

design.

3. Negative performance impact due to additional circuitry (i.e., path delays through

BIST components).

4. Additional design time and cost.

An obvious system design goal is to minimize the negative impact of BIST while max-

imizing its performance benefits. Traditionally, BIST approaches are evaluated with strict

regards to the additional area overhead required to achieve a specified level of fault cover-

age. Because low area overhead is naturally preferred, the use of complex BIST techniques is

generally restricted due to area minimization concerns. Since built-in self-testing approaches

are being developed for the system level, this suggests the use of system-level performance

metrics, in addition to the simple area overhead and fault coverage measures. The empha-

sis must be to have performance measures which capture the effects of BIST strategies on

both system performance and reliability. By assessing the composite BIST enhanced system,

optimization of the tradeoffs involved in a system design can be performed.

Test time is simply the time required to apply test patterns to a device under test.

For general systems, test time will be a function of several parameters including: number of

test patterns (test length), system complexity, and system test application frequency. Fault

coverage refers to the number of faults detected compared to the number of faults assumed.

The dependence of fault coverage on test length for random [56] and pseudorandom patterns

[56,57] has been explored in the literature, using both heuristic and algorithmic methods.

Area overhead is a measure of the hardware cost of a BIST scheme. The BIST hardware

overhead is generally expressed as a percentage. For an integrated circuit, the area overhead

p. 57

is the percentage of silicon area occupied by the BIST circuitry compared to the total die

area. Since device yield decrease with increasing die area, a small percentage overhead is

preferable.

Measures appropriate for the evaluation of fault-tolerant systems include reliability, per-

formance or reward, area utilization and cumulative reward. The reliability R(t) of a

system is defined as: "the conditional probability that the system has survived the interval

[0,t], given that it was operational at time t=0." This metric reflects the operational or

mission lifetime of a system, and is inherently a function of the reliabilities of the system's

components and their interconnect. Another performance measure of a system is what is

referred to as reward, as in [80]. The definition of this metric is not unique; it is generally

chosen to be the quantity that most adequately describes the performance of the system. For

example, reward for a multiprocessor system may be chosen to be its computation capacity

(e.g, instructions per second) as defined in [58].

Area utilization [59] accounts for additional hardware overhead (e.g., BIST circuitry)

required by the system to implement its fault-tolerant features.

Prior to gracefully degrading systems, reliability measures and performance measures

were evaluated separately from each other. However, with the advent of gracefully degrad-

ing systems, combined performance-related reliability measures have emerged [58]. It has

since been suggested that the prior separate measures do not adequately describe gracefully

degradable systems [60,61]. Consequently, other measures combining performance and reli-

ability aspects have evolved and are termed "performability" measures. One such measure

is referred to as cumulative reward. It is a function of time, and represents the total accu-

mulated performance of a system over a given interval. Mathematically, cumulative reward

is the integral of the instantaneous reward function. This measure is significant in that it

provides additional information regarding the performance of a system. However, status con-

cerning the completion of a job requiring the execution of N instructions, that was started at

p. 58

time t, cannot be determined from the instantaneous reward function. However, cumulative

reward reveals this information by providing the total accumulated number of instructions

the system has executed from the time it began operation (t = 0) until time t.

In order to include the benefits of the cumulative reward measure, a new metric to

quantify BIST system overhead, called cumulative area utilization, is proposed. This measure

is defined as:

cumulative area utilization = -jj

where,

CR = Cumulative Reward

TA = Total Area

Thus, cumulative area utilization represents a more informative area measure analogous

to cumulative reward, providing a more discerning performance measure.

Another metric that serves to unite self-testing and fault tolerant system performance

measures is fault coverage. There are several types of fault coverage, depending on whether

the designer is concerned with fault detection, fault location, fault containment, or fault

recovery [83]. System fault coverage may be defined simply [62] as the percentage of all

possible faults from which a system can recover. Thus, coverage probability is defined as the

probability that a system recovers successfully, given that a fault has occurred. Coverage

has been shown to be a sensative parameter of system performance measures [62,63]. The

coverage probability mainly depends on the fault coverage of the testing technique [59].

Thus, system coverage provides a critical link between the testing strategies of the BIST

techniques, and the performance levels of a fault-tolerant system.

Based on the above brief discussion, it may be suggested that apart from the aspect of

fault coverage (which was addressed by the first model presented in this chapter, Figure 5.1)

there may be a need to evaluate the BIT resources from other angles as well. In Figure 5.1, it

p. 59

is suggested that the tool should keep count of both the critical and non-critical errors. This

is tantamount to tracing the fault coverage of the BIT resources inserted by the designer.

That is why fault coverage is the only performance metric being employed in this default

model. Efforts to use other performance measures, such as area utilization, would invariably

need the description of the system, including for example, the number of extra pins, extra

hardware, etc. So, in Figure 5.2 the possibility of the existence of such a model is indicated.

One such model should be provided as a default (D in Figure 5.2), and the flexibility should

be given to the user to interface an application specific model for BIT evaluation, if desired

(M in Figure 5.2). The default model is proposed to have the metrics like cumulative area

utilization, as suggested above. Also, if the user is using standard cell library, then a close

estimate of hardware overhead can be incorporated. In that case, even the delays introduced

by the BIT circuitry can be used to evaluate the reward parameter. Many such models

already exist and can readily replace the default model.

Next, we look at techniques that help the designer plan his BIT resources.

5.3. Recommended BIT Insertion Techniques

In addition to the proposed BIT evaluation scheme , some representative ways of inserting

BIT in hardware are now described. These may be built in the BIT evaluation tool to help

the designer insert effective BIT for detecting mission-critical faults.

5.3.1. Survey of Automatic BIT Insertion Techniques

Several systems for automatic DFT have been reported in the literature. Of these, the two

most relevant systems are briefly reviewed here. The first system is the Testable Design

Expert System, or TDES [64]. The basic strategy of the system is to find a suitable DFT

(Design For Test) scheme for each part of a circuit. These DFT schemes are called Testable

Design Methodologies (TDMs). Examples of TDMs are Scan-Path, LSSD (Level Sensitive

p. 60

SIMULATOR

BIT EVALUATIO: VALUATION

M

CRITICALITY
DETECTOR

D AIBH Cl C2

M: This can either be the user specified model or the default model.

D: Interfaces with simulator to find out whether the error was
detected by the BIT resources or not.

AIBH: This is optional and if present can help the designer insert BIT.
Cl: Interfaces with Criticality detector and keeps count of critical

errors.
C2: Also interfaces with the criticality detector and keeps count of non

critical errors.

Figure 5.2. The BIT Evaluation Tool with Multiple Performance Measures

p. 61

Scan Design), BILBO (Built-in Logic Block Observer), and several methods for testable

design of PLAs (Programmable Logic Arrays). This system first partitions the circuit into

several parts called "kernels." Then, an applicable TDM is sought for each kernel using a

matching process. In the matching process, the I-path concept is used. An I-path is a path

through which data can be transferred without any change. This I-path is used for identifying

possible registers and paths for test pattern generation and response evaluation. If more than

one TDM is applicable to a kernel, then TDM measures are used to choose between them.

TDM measures are estimates of the costs associated with using a TDM. Frames are used for

representing knowledge about TDMs. The TDES system has been implemented in LISP. A

high level view of the configuration of this system is shown in Figure 5.3.

Another system proposed by Jones and Baker [66] uses AI techniques, including a rule-

based system and planning, for high-level BIST design. This system relies heavily on BILBO-

based BIST implementation. Insertion of BILBO is guided by constraints on hardware over-

head and testing time, which are specified by the designer. The basic strategy employed

by the system is to insert an appropriate number of BILBOs so that the given constraints

on hardware overhead and testing time are satisfied. The system presents a range of test

plans which meet the constraints imposed by the designer and achieve a balance between

area penalty and test time. Each plan satisfies the constraints in different ways. From

the set of possible test plans, the designer can select a suitable one that best matches the

original design considerations. This system has been developed using the LOOPS [66] multi-

paradigm programming environment which supports object-oriented, rule-based, procedural

and access-oriented programming.

Although different AI techniques are used in the implementation of these two systems,

there are some similarities between the two. First, both systems consider the insertion of

BIT hardware at the register transfer level. Second, random pattern testing, based on the

BILBO architecture, is used for the testing of Combinational Logic Blocks (CLBs). Third,

p. 62

DESIGN GOAL AND CONSTRAINTS STRUCTURAL RTL DESIGN

1 I (VHDL)

KERNEL

] 'ARTITIONINC

TESTABILITY

FLOW

ANALYSIS

TDM

EMBEDDING

KNOWLEDGE BASE

TEST PLAN

SENERATION

COST
ANALYSIS

AND
SELECTION

KERNEJUDTEST TESTABILITY MODILD RTL
PLANS REPORTS DESIGN

Figure 5.3. TIGER: Testability Insertion Guidance Tool

p. 63

BILBO insertion is performed locally, rather than globally, in both systems. Neither of the

two systems uses VHDL in the input description of the hardware. Since it has already been

stated that VHDL is the preferred vehicle for modeling a design, it will be required to insert

BIT resources in the VHDL model.

5.3.1.1. Tasks for Automatic Insertion of BIST Hardware

Many of the ideas used in the two systems described above can also be used in the proposed

tool. However, a major difference is the use of VHDL. Given a VHDL description of a design,

the structure of the design is extracted first. Then the tool should allocate testing resources

such as Pseudo Random Pattern Generators (PRPGs) and Multiple Input Signature Regis-

ters (MISRs), to test CLBs in the design. Resource allocation may be followed by a scan-path

organization. A scan-path can be used to collect signatures and to test sequential logic in the

design. Upon finalizing a recommendation for test resource allocation, a test session for each

CLB (combinational logic block) is scheduled, and control signals for distinguishing between

several functional modes are distributed to the multi-functional registers in the design. In

the following paragraphs, each of these tasks will be described in some detail.

To insert BIST circuitry into a design, the structure of the design needs to be extracted

from the description of the hardware and represented internally in a usable database. There-

fore, the first task performed should be the transition of VHDL description into a structural

description.

Consider the case where a CLB is tested using BILBOs. A structural configuration,

PRPG -> CLB -> MISR, should be constructed (the symbol -> implies an I-path between

two entities). Here PRPG is the acronym for Pseudo Random Pattern Generators and MISR

is an acronym for Multiple Input Signature Register. Since PRPGs and MISRs can be con-

figured from existing registers, any available resource from the original design should be used.

However, there may not be registers available which can form the required configuration, i.e.,

p. 64

Register -> CLB -> Register. In this case, it may be necessary to add extra registers to the

original design. Therefore, the second task of AIBH (Automatic Insertion of BIT Hardware)

is the allocation of existing registers to act as PRPGs and MISRs for testing CLBs and

indicating where hardware must be added to perform PRPG and MISR tasks that meet the

test specifications for design.

This task may be followed by the formation of scan path that can facilitate the testing

of sequential logic. In its simplest form, a scan path at a chip I/O can be used to facilitate

a structural testing technique at the board level, namely boundary scan. This becomes

significantly important due to the existence of standards that support a test interface and a

bus protocol, most notably IEEE 1149.1.

The next task is test scheduling. Test scheduling is an arrangement of testing sessions so

the total testing time can be minimized, given the fixed allocation of PRPGs and MISRs.

The final task of AIBH is the distribution of register control signals. Since registers are

used in several functional modes, control signals are needed for the proper configuration of

registers in each test session.

In summary, the core tasks of AIBH should be the following:

1. Translation of VHDL description into structural information.

2. Allocation of PRPG and MISR for the chosen CLBs in a design.

3. Scan-path organization.

4. Test scheduling.

5. Distribution of register control signals.

In order to accomplish these tasks, the input description of a design must provide all of

the necessary information. Details of a specific implementation of above mentioned concepts

can be found in [65].

p. 65

5.4. Tracing Critical Faults

Given a VHDL model of a hardware design of the system, it is easy for a parser to extract

the relationship between various signals in the system. The motivation to do so arises from

the fact that after identifying a critical fault, the designer may be interested in knowing how

the faulty signal fans out to the modules driven by it. Also, tracing this signal back to other

signals might be helpful for the designer.

'

i i
i i
i i

1
L

^ MM
J

£
i
i

?\ i
W I .

\!2 Ü 5 t V4 1 i V 5

i i

1
1
1 I- -

6 ty V
—i

7\ 1 \ /

8 V

* i ' \ 1

-

Figure 5.4. Tracing a Critical Fault

Figure 5.4 shows a system with eight modules. In this design example, the interconnec-

p. 66

tions of various modules by different signals is shown with dotted arrows. Also shown is a

critical fault that has been detected at the node marked by an X in a circle. The fanout

from this point has been shown with the help of solid lines, so that it is obvious that the

critical error can have an effect on a number of components. This is the effect the designer

may want to be aware of. The parser can determine the fanout from the VHDL model and

indicate to the designer (upon request) the modules affected by the occurrence of a critical

fault that may be detected at any point in the circuit.

To generate fault diagnostics (used in tracing the error), many AI-based systems exist

using rules. Each rule specifies a symptom and fault pair [69,70,71,72]. Such rules are

created for each design. Given a set of symptoms, these rules give a set of possible faults for

a particular design. As the complexity of system design increases, the rule-based approach

becomes impractical [73,74]. Some modifications of these algorithms have been suggested to

improve efficiency [75]. Some AI based algorithms for fault diagnosis use the stuck-at-fault

model [70].

None of the above systems is able to perform fault diagnostics on VHDL descriptions of

the system. In [67], a VHDL Fault Diagnosis Tool (VFDT) is described.

p. 67

6. TOOLS

When laying down the guidelines for the implementation of the proposed tool set, an effort

is made to identify some existing tools to perform required functions. Such existing tools, if

incorporated in the proposed framework for the tool set, can lead to great savings in time

and effort needed to implement the tool set.

In the previous chapters, a functional description of various tools were presented within

the context of Quantitative FMEA (QFMEA). Here, issues regarding the implementation of

various tools are discussed. The proposed tool set consists of tools implementing different

functions in the QFMEA concept such as fault injection, simulation, criticality analysis, and

BIT evaluation. Existing tools that can be used to perform one or more of these tasks include

VHDL simulators, which exist in the market, e.g., [68]. Similarly, there have been efforts to

design a system which performs fault diagnosis and simulation of systems whose architecture

has been described in VHDL [67]. This system uses a VHDL simulator (VSIM), which uses

a discrete-event-based compiled code simulation algorithm. To generate fault diagnostics

(used in tracing the error), many Al-based systems exist using rules. Some of these tools

can be directly incorporated in the proposed tool set and others can be used as models for

implementation. The emphasis is on modifying the existing tools to fit into the framework

of the proposed tool set. In general, the requirements for pre-existing tools to fit in are:

• The tool should have good performance in terms of reasonable runtime and functional

correctness of the results it produces.

• The tool should fit in the overall structure. This means that it should be easy to

interface it with other parts.

Tool functions which cannot be implemented with existing tools have to be developed as

new tools. Also, software has to be developed to interface between the tools, and between

the kernel and the various tools.

p. 68

Various tools recommended to be included in the tool set are mentioned below:

• The Kernel.

• The VHDL Simulator.

• Fault Injector.

• Criticality Detector.

• BIT Evaluation Tool.

• Online Help and Tutorial.

• Enhancements and Options, User Interface Manual.

The detailed description of tools starts with the kernel which, as described is the frame-

work where all the different subtasks take place, is the mode of communication between the

user and the tool.

6.1. The Kernel

The kernel is the basic user interface and a common bus through which various parts of

the tool set can communicate. The interface between the designer and the kernel can be

implemented as a GUI (Graphical User Interface). Figure 6.1 shows one such example in

which the GUI handles various phases of design cycle together with the proposed tool set. A

GUI customized to meet the requirements of this tool will offer best performance, but a great

saving in time and effort can be realized by modifying an existing GUI. The Design Manager

tool, which is a part of the Falcon Framework by Mentor Graphics, is recommended as a

vehicle for the GUI implementation. The Falcon Framework also offers some other distinct

advantages:

p. 69

• The Falcon Framework provides a user interface language AMPLE [76]. With the help

of this facility, it is easy to interface various tools with the GUI provided by the Falcon

Framework.

• Since the proposed tool set will be used as part of a design cycle, which may be depicted

as in Figure 6.2, the proposed framework should be able to support other tools (such

as schematic editor, simulation and synthesis tool etc.), in addition to QFMEA tool

set. This requirement is also fulfilled by the Falcon Framework.

GUI

Text
Editor

Fault
Injector

Simulator

Criticality
Detector

BIT
Evaluation

Fault
Simulation

Layout Help
Hypertext
Manuals

Logic
Synthesis

NOTE: All the functions needed for the system development

are handled by the same GUI interface.

Figure 6.1. Graphical Interface Incorporating the Proposed Tool Set in the Design Cycle

p. 70

1
"WaoOLD^erijÄloa

I
*

! Analysis :

I
♦

To Fabrication

Figure 6.2. The Design Cycle

p. 71

An integrated tool set is recommended because it allows the process of identifying mission-

critical faults, and designing BIT capable of detecting these faults, to be viewed by the

designer as part of the overall design process.

The Falcon Framework also features a number of tools that can be used to provide some

of the data neeeded to perform the required QFMEA functions. Such tools are the VHDL

simulator (System 1076), the design capture (Design Architect), and the model databases

supporting these tools (e.g., VHDL models from Logic Modeling Corporation).

6.2. Queries

This section describes the information which the user should pass to the tool set through

the GUI (recommended above). The designer has to specify some inputs in addition to a

VHDL model. He should be able to specify these inputs (discussed below) interactively with

the help of the GUI. However, for a large system it might be preferable to place such inputs

in files which the system can read. These additional inputs are described next.

Along with the VHDL description the designer should provide various system attributes

to be used by the Criticality Detection tool (Section 4.4). Since an output signal can be

tested for criticality based on various parameters (such as RMS value or average value)

and outputs can have different characteristics (such as synchronous or asynchronous), these

attribute specifications must be made by the user. This will help the system to store the

required values in the required format while the simulation is in progress. The attributes

are listed below:

• Sampling period (i.e., the basic unit of simulation time).

• If individual outputs, or a combination of outputs is to be traced for criticality.

• Whether the system has rollback points or not.

p. 72

• Whether the system needs to trace only critical faults according to the criticality

criterion, or trace all faults.

• Whether the system is synchronous or asynchronous.

• Tolerance value before a fault effect becomes critical.

In addition to the attribute specification, the tool set may need to know whether the user

wishes to provide specifications interactively or through the default files.

A list of recommended queries which the designer needs to resolve are listed in Table 6.1.

Table 6.1. Recommended Set of Queries

Query User chooses from Description
Outputs Outputs to be monitored The user specifies outputs to be traced
Tolerance Tolerance value per output User states what is critical
Tolerance Mode RMS or average or default Default is per sample
Synchronous Yes or No If yes, clock period is sampling period
Sampling Period sampling period Simulator knows when to store results
Output Combination Output combination If combination of outputs to be traced
Rollback Present Yes or No If rollback, tool defines sampling period
Warning Yes or No Warnings flagged or not
Simulator Options As described -
Abort Abort or continue Abort at instance of first critical error

It is possible that conflicts and/or omissions might exist between various user specifi-

cations. Such conflicts have to be reported back to the user. Some examples of potential

conflicts are listed below:

• Conflict 1: If the user defines that rollback is present in the system and fails to

define the "rollback point" (i.e., a bit that flags when the simulation of the system

rolls back). If such a bit or an equivalent mechanism is not present, the tool has no

means of keeping the faulty and fault-free simulation values in synchronization while

comparing them.

p. 73

• Conflict 2: Another conflict might arise if the user defines a signal as synchronous

but fails to specify the signal (typically the clock signal) with which it is synchronous.

The default can be the global clock for all such signals (provided the clock is specified

by the user).

• Conflict 3: If the user wants a specified output or a combination to be traced on the

basis of RMS or average value but fails to specify the time interval over which such

operations are to be carried out.

• Conflict 4: If the tool is to flag warnings, then it needs to know what range of

error values constitutes critical system behavior and what range should be flagged as a

warning (i.e., depending on whether the warnings are to be flagged or not, the format

of tolerance will be different). Failure to specify the values in the right format will lead

to a conflict being reported.

The above set of queries were related mostly to the criticality analysis. An additional

set of queries is related to the fault injection operation. The tool should provide the user

with various options regarding which faults to simulate. These options should include as a

minimum:

• The user can let the tool access the reliability and component failure database, and

determine a fault list to be simulated, based on a selection procedure to be developed.

• The user may explicitly specify the faults (corresponding to the fault model being used)

to be simulated.

• The user may use a statistical generation and mapping of faults, by specifying distri-

butions of fault occurrence for the different components or the system.

• A combination of the above alternatives.

p. 74

In any case, the user has to specify the number of faults, num^faults, that need to be

simulated.

There are also queries relating to BIT evaluation. The system designer needs to specify

BIT allocation points, which are the points at which the designer intends to insert BIT into

the system. These BIT points are defined in the VHDL model of the design, along with a

functional model of the BIT technique used to monitor these points. The user in this case

has to indicate:

• The explicit location of the BIT allocation points.

• How the BIT resources allocated at these points detect and report the faults.

Indication of the BIT point can be done in the VHDL code. The resulting VHDL code

should be compatible with standard VHDL. So the indication can be done inside the VHDL

comments if needed. The VHDL parser can, thus, identify the BIT points and the tool can

allocate a global BIT counter for each of the BIT monitoring points. Such counters keep

track of the faults which are detected at a corresponding BIT allocation point. With the

help of these counters, a detectability table (also described earlier, in Chapter 5) can be

constructed by the BIT evaluation tool. An issue that needs to be resolved is; how a BIT

resource (inserted in VHDL code by the user) will communicate to the tool that a fault has

been detected. Again, this difficulty can be surmounted by letting the user decide what

constitutes detection of a fault (which varies with the BIT strategy employed). When such a

condition occurs, the user specifies (in the VHDL code inside the comments) BIT-flag <= 1.

The tool can interpret this as a sign that an injected error has been detected. For example,

suppose the original VHDL code is the following:

architecture rtl of shflO is

signal pre_Q : qsim_state_vector(9 downto 0) := (OTHERS => 'X');

p. 75

begin

SHIFT_REGISTER_Process: process(CLK)

begin

if (CLK'event and (CLK = '1') and (CLK'last_value = '0')) then

if (LD = '1') then

pre_Q <= DIN;

elsif (SE = '1') then

pre_Q(9) <= '0';

pre_Q(8 downto 0) <= pre_Q(9 downto 1);

end if;

end if;

end process SHIFT_REGISTER_Process;

DOUT <= pre_Q;

end rtl;

}

If LD = '1' corresponds to the detection of a fault, the code which the user should input

is:

architecture rtl of shflO is

signal pre.Q : qsim_state_vector(9 downto 0) := (OTHERS => 'X');

begin

SHIFT_REGISTER_Process: process(CLK)

begin

if (CLK'event and (CLK = '1') and (CLK'last.value = '0')) then

if (LD = '1') then —** BIT_flag <= 1;

pre_Q <= DIN;

elsif (SE = '!>) then

p. 76

pre_Q(9) <= 'O'j

pre_Q(8 downto 0) <= pre_Q(9 downto 1);

end if;

end if;

end process SHIFT_REGISTER_Process;

DGUT <= pre_Q;

end rtl;

This code assumes that '**' after '-' for comments is used to hide information in these

comments. These are the comments the tool looks for when defining the Global counters for

BIT evaluation.

Presence of BIST resources can also be indicated in any of the following manners:

• An executable statement that calls a logging routine that, itself, turns logging on and

off.

• An executable statement that is easily commented out when not needed. In this

strategy, there may be a need to recompile and edit the code each time the designer

wants to turn the BIST mechanism on or off.

All this queries can be conveniently incorporated in the Design Manager software in the

Mentor Falcon Framework so these functions can be easily implemented; this is another

advantage of using a standard GUI.

6.3. Simulator

After the VHDL code describing the design has been compiled, the fault injection takes

place and this design is simulated for determining the criticality of fault effects based on

the observed error quantities. Both the compilation and simulation can be performed by

p. 77

tools provided as a part of the Falcon Framework. Compilation of code can be performed by

hdl, the VHDL compiler. QuickSimll [77] can be used to do the required simulation. The

design can be captured, in this case, using Design Architect. QuickSimll works with the

Design manager and offers a number of capabilities and options that can be very useful for

the purpose of the proposed tool set.

• Timing Mode of simulation can be minimum, maximum, or typical among others. This

facility provides greater flexibility to the system designer.

• Constraint Mode can be off or on for messages. As already mentioned, this is a recom-

mended feature in the proposed tool set (i.e., the ability to flag not only the critical

faults but also the potentially critical faults based on the designer's need).

• Delay Model can be inertial or transport (the two methods defined in VHDL). This

lets the designer create a VHDL model which better suits his need.

Since this system supports the standard VHDL (i.e., System 1076) as well as Mentor

VHDL, the user has a greater choice of module libraries and components. Tracing, listing

and viewing individual signals, viewing the progression of signal values over time, running

the simulation and providing stimulus are easily done in the framework of QuickSimll.

It must be noted, that recommending the use of the Design Manager tool and the Quick-

Simll has been made with interfacing capabilities in mind. Mentor Graphics provides user

interface functions for all of its higher-end tools such as QuickSimll and Design Manager.

These are part of the AMPLE [76] procedure calls. With the help of these calls, the user is

able to suitably modify the interfaces and build applications around these tools. As men-

tioned earlier one of our objectives was that the interface for the usable tools be modifiable

to fit the needs of QFMEA tool set.

The simulator has to interface both with the kernel and with the fault injection tool.

Interface with the fault injector is needed because the fault injector identifies the fault to be

p. 78

simulated, generates the appropriate mask value in the "superentity model," and calls the

simulator. This function cannot be performed with a fault simulator resident in the Falcon

Framework.

6.4. Fault Injector

Fault Injection

Parser Mask Generator Injection

VHDL Model DataBases User Simulator

Figure 6.3. Parts in Fault Injector

The fault injection module (Figure 6.3) determines which faults, out of the defined fault

population, should be simulated, based on the user-specified selection approach as discussed

previously. This tool has to interface with the component reliability database and examine

the structure of the design to select a subset of the fault population. The software to be

developed for the Fault Injector should have the following components:

• Parser: To parse the VHDL entities and generate the masked entities called superen-

tities.

p. 79

• Mask Generator: Controls the mask values depending on the selected faults from the

total fault set. This is the module which interfaces with the reliability database and

the user to weigh the faults and, thus, form a prioritized subset of faults.

• Injector: A function which calls the simulator with the mask appropriate for the fault

to be simulated.

Fault injection requires that each of the VHDL entities used in the original design be

expanded into the superentities. These superentities are the original entities with a mask

around them. This mask is useful to regulate the values at the output or input of these

entities. If the stuck-at fault model is used, then temporary or permanent faults can be

generated. This process will be handled by the fault injector, which needs to be developed.

All these parts of the fault injector have to be developed and should be compatible with

the Mentor Graphics tools that have been recommended.

6.5. Criticality Detector

The purpose of this stage is to determine whether the responses of the faulty system, which

have been collected during fault injection, are critical or not. In a typical scenario, the

designer provides a sequence of inputs to the simulated system. The response of the fault-

free system to this sequence is then recorded by the tool. Thereafter, the faults chosen are

injected and the response of the faulty system is also stored for a comparison. At the end of

the run (i.e., when all the faults have been simulated), the criticality detector is evoked.

The criticality detector (Figure 6.4) is a comparator which uses the files corresponding to

the faulty and fault-free responses and compares the corresponding entries. Such a simplistic

view for this stage can be afforded, provided all groundwork involved in the queries which

let the simulator store the response data in a convenient format for comparison has been

completed correctly.

p. 80

CRITICALITY DETECTOR

Response
recordei

by the
simulator

Fault Free

Responses

Critical?

Stored in logfiles

Tolerances

Figure 6.4. Criticality Detector

p. 81

The comparison needs to be done only for the outputs which have been identified pre-

viously (as a part of the query stage). The responses are stored only for such nodes. The

comparison takes into account the tolerances which have been specified by the user, records

whether the fault is critical or not, and in which interval or sampling period the fault became

critical. Such a record is kept in logfiles which serve two purposes:

• To inform the user of the time instances when critical errors occurred.

• For BIT evaluation, which is discussed next.

Since all the results of simulation are being retrieved in this stage, some work related

to BIT evaluation can be completed. Whenever a critical fault is identified, all the global

counters associated with the BIT monitoring points, where BIT resource are located, are

checked to determine if the fault has been detected. The status of all global BIT counters is

updated each time a critical fault is identified.

6.6. BIT Evaluation Tool

All the data needed for the BIT Evaluation Tool are collected in the criticality detection

phase. The function performed at this stage is to use these data and make decisions about

the efficacy of BIT resources in the system.

The methodology for this phase has been elaborated in the chapter on BIST evaluation.

For this level, all the software has to be developed. This tool will read the logfiles mentioned

above and the values of the global counters, and will collate these responses. The purpose

of doing this is to create a table in the format shown in Table 6.2.

This table is a summary of the activity at the monitoring points where BIT resources

are allocated, and also a report of how effective these points and their associated BIT re-

sources have been in detecting mission-critical faults. This table is used as a feedback to the

p. 82

Table 6.2. File Format for BIT Logfiles
BIT_POINTl BIT.POINT2 BIT_POINT3 BIT_POINT4

Faultl 1 0 0 0

Fault 2 0 1 0 1

Fault3 0 1 0 0

Fault4 0 0 0 0

designer, to inform him of the effectiveness of the BIT resources employed. This task is rel-

atively simple in terms of software development. However, since a subset of faults and fault

combinations will likely be used for a complex design, the BIT assessment has to use some

statistical post-processing of the data to produce confidence levels for the BIT effectiveness

resulted from a chosen fault injection experiment.

6.7. Online Help and Tutorial

While designing a system, simulating it, injecting faults, or for that matter in any other

design activity, the user may need help with different facets of the tools. A help facility is

recommended for the tool set and it can be arranged in several levels.

6.7.1. Level 1

In previous paragraphs, the Falcon Framework was proposed to be used as a basis for de-

veloping the kernel. The proposal to use the Falcon Framework as the overall framework in

which the QFMEA tool set takes into consideration the ability to use the resident help facil-

ity, which can be easily accessed at any point as the user interacts with the framework. This

help facility should be augmented to provide online help for the QFMEA tool set. The help

can be organized in different ways. At the very outset (i.e., when the designer presents his

VHDL design to the QFMEA tool), the designer must be able to look at the tool summary

and functions. This is the first level of the help function, and should necessarily be kept

p. 83

simple. This level is for a novice user of the tool, and should serve the following functions:

• Introduction to the tool set as a whole.

• Introduction to the tool structure.

• Introduction to the individual tools, their functions, and recommended sequence of

use.

6.7.1.1. Tutorial

At the first level, the user should be able to go through a brief tutorial, which will illustrate,

through an example, how the tool works. A relatively simple system can be selected to

illustrate the functioning of the proposed tool set. As a first step, mission requirements

should be clarified. The user is then notified of the fault model being used and the possible

fault set for the chosen system. Then, a preset database is used to show the user how the tool

selects faults for injection. Also, the user must be made to realize how those outputs whose

criticality is to be examined can be chosen, and how to specify criticality requirements for

those outputs. The tool then proceeds to simulate a user-defined set of faults or the faults

injected by the tools, and shows which are found to be critical.

After identifying these mission-critical faults, the tutorial should point out to the user

how the BIT resources perform versus the specifications. Poor BIT performance can be

highlighted by identifying some mission-critical faults which the BIT resources have not

been able to detect. At this point, one iteration of the use of QFMEA tool may be complete

and the next starts after the tool shows a possible modification of the BIT resources and

goes through the cycle again, which results in a better BIT performance.

p. 84

6.7.2. Level 2

The second level of help is the actual online help when the user is actually using the tool.

At all points in a tool session, the user must have help available, so this level is distributed

over individual tools in the tool set. At all times, the tool keeps track of what the user is

doing and provides relevant help. This level is incorporated in the Falcon Framework and

can be expanded to include help on various features of the QFMEA tool set.

6.8. Enhancements and Options, User Interface Manual

Throughout this report, it has been pointed out that the user might be inclined to use

features different from the ones provided by default. The main example can be that of the

fault model being used by the tool. Although the stuck-at model seems to be the most

convenient choice, and is the one recommended for this tool, the user may prefer to use an

alternative model. Also, there may be enhancements over the default models which the user

may want to incorporate in the tool. The idea being emphasized here is that of flexibility

of the tool. The tool developer must define the interfaces to all tools and produce a user

interface manual.

Wherever alternate options are allowed, a comprehensive way of realizing those options

must be provided to be used by either the user or a third party. In any case, the user

interface manual must list and explain all the submodules that can help a user in enhancing

the capabilities of the tool, and modifying them to tailor his needs. Also, in this manual

all the known bugs of the designed system, the error messages and corresponding remedies

must be listed.

p. 85

References

[1] H.B. Dussault, "The Evolution and Practical Applications of Failure Modes and Effect

Analyses," RADC-TR-83-72, March 1983.

[2] G. Babour, "Failure Mode and Effect Analysis by Matrix Method," 1977 Proceedings

Annual Reliability and Maintainability Symposium, January 1977, pp 114-119.

[3] S. Herrin, "System Interface FMEA by Matrix Method," 1982 Proceedings Annual Re-

liability and Maintainability Symposium, January 1982, pp 111-116.

[4] H. Ohlef, W. Binroth, and R. Haboush, "A Bayesian Approach to a Failure Mode

Effects Analysis," Technical Report, BRL/TR-76-8161, Bendix Research Laboratories,

Southfield, MI, September 1976.

[5] H. Ohlef, "A Computer System Specification for a Bayesian Failure Mode Effect Analysis

Technical Report," BRL/TR-76-8186, Bendix Research Laboratories, Southfield, MI,

September 1976.

[6] F. Hedin, A. LeCoguiec, L. LeFloch, M. Llory, and A. Vilemeur, "The Failure Combi-

nation Method," 1981 Proceedings Annual Reliability and Maintainability Symposium,

pp 163-172.

[7] W. L. Bunce, "Hardware and Software: An Analytical Approach," 1980 Annual Relia-

bility and Maintainability Symposium, pp 209-213.

[8] M. J. Legg, "Computerized Approach for Matrix-Form FMEA," IEEE Transactions on

Reliability, Vol. R-27, No. 4, October 1978, pp 254-257.

[9] P. L. Goddard, and R. Davis, "Automated FMEA Techniques," RADC-TR-84-244,

December 1984.

p. 86

[10] R. J. Schroder, "Fault Trees for Reliability Analysis," 1970 Proceedings Annual Relia-

bility and Maintainability Symposium, pp 198.

[11] J. B. Russell, G. J. Powers, and R. G. Bennetts, "Fault Trees - A State of the Art

Discussion," IEEE Transactions on Reliability, Vol. R-23, No. 1, April 1979, pp 51.

[12] R. C. Clardy, "Sneak Circuit Analysis, Reliability and Maintainability of Electronic

Systems," Arsenault and Roberts, ed., Computer Science Press, 1980, pp 223-41.

[13] D. L. Burratti, and S. G. Goody, "Sneak Analysis Application Guidelines, RADC-TR-

82-179, June 1982.

[14] B. Tiger, "Evaluating System States in Their Mission Phases," 1969 Proceedings Annual

Reliability and Maintainability Symposium, pp 18-26.

[15] T. W. Yellman, "Event-Sequence Analysis," 1975 Proceedings Annual Reliability and

Maintainability Symposium, pp 286-291.

[16] R. K. Thatcher, J. L, Easterday, and F. R. Raylor, "An Integrated Predictor of System

Reliability," Proceedings Annual Reliability and Maintainability Symposium, pp 254-260.

[17] F. Tuma, "Software/Hardware Integrated Critical Path Analysis (ICPA)," 1980 Pro-

ceedings Annual Reliability and Maintainability Symposium, pp 384-387.

[18] H. B. Dussault, "Automated FMEA - Status and Future," 1984 Proceedings Annual

Reliability and Maintainability Symposium, pp 1-5.

[19] J. H. Wensley, et al., "SIFT: Design and Analysis of a Fault-Tolerant Computer for

Aircraft Control," Proceedings of IEEE, Vol. 66, No. 10, October 1978, pp 1240-1255.

[20] Kenyon, R. L., and R. J. Newell, "FMEA Techniques for Microcomputer Assemblies,"

1982 Proc. of Annual Reliability and Maintainability Symposium.

p. 87

[21] Chandler G., et al, "Failure Modes/Mechanism Distribution." Reliability Analysis Cen-

ter, Griffiss AFB, NY.

[22] Dhillon, B. S., "FMEA Analysis-Bibliography, Microelectronics and Reliability," Vol.

32, No. 5, pp 719-31.

[23] Iyer, R. K., and G. S. Choi, "Experimental Validation of Real Time Fault-Tolerant

Systems," NASA-CR-190985, October 1992.

[24] Monaghan T., "The Concept Exploration Stage of a Dependable Avionic System,"

IEEE/AIAA Digital Avionics Systems Conference, Los Angeles, CA.

[25] Hesterberg, T. C. "Advances in Importance Sampling," Ph.D. dissertation, Department

of Statistics, Stanford University, 1988.

[26] Hammersley, J. M., and Hanscomb, D. C, Monte Carlo Methods, London: Methuen,

1964.

[27] Goyal A., Heidelberger P., and Shahabuddin P., " Measure Specific Dynamic Impor-

tance Sampling for Availability Simulations," Proceedings of the 1987 Winter Simulation

Conference, pp 351-357, 1987.

[28] Beckman, R. J., and McKay, M. D., "Monte Carlo Estimation Under Different Distri-

butions Using the Same Simulation," Technometrics 29, pp 153-160, 1987.

[29] Booth, T. E., "A Monte Carlo Learning/Biasing Experiment with Intelligent Random

Numbers," Nuclear Science and Engineering 92, pp 465-81, 1986.

[30] Conway, A. E., and Goyal, A., "Monte Carlo Simulation of Computer System Availabil-

ity/Reliability Models," Proceedings of the Seventeenth Symposium on Fault-Tolerant

Computing, Pittsburgh, PA, pp 230-235, 1987.

p. 88

[31] Hesterberg, T. C, "Importance Sampling in Multivariate Problems,' Proceedings of

the Statistical Computing Section, American Statistical Association 1987 Meeting, pp

412-417, 1987.

[32] Hopmans, A., and Kleijnen, J. P. C, "Importance Sampling in Systems Simulation: a

Practical Failure?" Mathematics and Computers in Simulation 21, pp 209-220, 1979.

[33] Kahn, H., "Nucleonics," 6(5), 27-37 and 6(6) pp 60-65, 1950.

[34] Kahn, H., and Marshall, A. W., "Methods of Reducing Sample Size in Monte Carlo

Computations," Journal of the Operations Research Society of America, 1, pp 263-278,

1953.

[35] Kioussis, L. C, and Miller, D. R., "An Importance Sampling Scheme for Simulating the

Degradation and Failure of Complex Systems During Finite Missions," Proceedings of

the 1983 Winter Simulation Conference, pp 631-639, 1983.

[36] Kloek, T., and Van Dijk, H. K., "Bayesian Estimates of Equation System Parameters:

An Application of Integration by Monte Carlo Econometrica," 46(1) pp 1-19, 1953.

[37] Moy, W. A., "Sampling Techniques for Increasing the Efficiency of Simulations of Queu-

ing Systems," Ph.D. dissertation, Industrial Engineering and Management Science,

Northwestern University, 1965.

[38] Murthy, K. P. N., and Indira, R., "Analytical Results of Variance Reduction Charac-

teristics of Biased Monte Carlo for Deep-Penetration Problems," Nuclear Science and

Engineering 92, pp 482-487, 1986.

[39] Siegmund, D., "Importance Sampling in the Monte Carlo Study of Sequential Tests,'

The Annals of Statistics 4, pp 673-684, 1976.

p. 89

[40] Stewart L., "Multiparameter Univariate Bayesian Analysis," Journal of the American

Statistical Association, 74, pp 684-693, 1979.

[41] Stewart L., "Multiparameter Bayesian Inference Using Monte Carlo Integration Q Some

Techniques for Bivariate Analysis," Bayesian Statistics 2, eds J.B. Bernardo, M. H.

DeGroot, D. V. Lindley, A. F. M. Smith, Elsevier Science Publishers B.V. (North-

Holland), pp 495-510, 1983.

[42] Therneau, T. M., "Variance Reduction Techniques for the Bootstrap," Technical Report

No. 200, (Ph.D. Thesis) Department of Statistics, Stanford University, 1983.

[43] Tukey, J. W., "Configural Polysampling," SIAM REVIEW 29, pp 1-20, 1987.

[44] Wilson, J. R., "Variance Reduction Techniques for Digital Simulation," American Jour-

nal of Mathematical and Management Sciences 4, pp 277-312, 1984.

[45] Danner, F., and W. Consolla, "An Objective Testability Rating System. Proc. of 1979

IEEE Test Conf. pp 23-28, Cherry Hill, NJ, 1979.

[46] Takasaki S., M. Kawai, S.Funatsu, and A. Yamada, "A Calculus of Testability Measures

at the Functional Level," Proc. of 1981 IEEE Test Conf pp 95-101, 1981.

[47] Z. Segall, D. Vrsalovic et al., "FIAT-Fault Injection Based Automated Testing Environ-

ment," Proc. FTCS-18, Tokyo, pp 102-107, 1988.

[48] "Fault Simulation at the Architectural Level," Proc. of 1984 ITC, IEEE, pp 669-679,

1984.

[49] "A Simulation Approach for Computing System Reliability," Microelec. Reliability Vol.

27, No. 3, pp 463-467, 1987.

[50] Padilla P. A., "Fault Recovery Characteristics of the Fault Tolerant Micropro

IEEE/AIAA/NASA Digital Avionics Conference, 9th Virginia Beach, 1990.

cessor,

p. 90

[51] Vaanmoorsel, AAD P.A., Haverkort, Boudewijn R., Niemgeers, I. G., "Fault Infection

Simulation: A Variance Reduction Technique for Systems with Rare Events," 2nd Intl.

Working Conf. on Dependable Computing for Critical Appln., Tucson, AZ, 1991.

[52] Choi, G. S., Iyer, R. K., Carreno V. A., "Simulated Fault Injection - A Methodology

to Evaluate Fault Tolerant Microprocessor Architectures," IEEE Trans, on Reliability,

Vol. 39, pp 486-491, October 1990.

[53] Barton, J. H., Czeck, E. W., and Segall Z. Z., Siewiorek, D. P., "Fault Injection Exper-

iments Using FIAT," IEEE Trans, on Computers, Vol. 39, pp 575-82, April 1990.

[54] Baker, R. L., Magnum, L. S., and Scheper, C. 0., "A Simulation-Based Fault Injec-

tion Experiment to Evaluate Self Test Diagnostics for a Fault Tolerant Computer,"

AIAA/IEEE Digital Avionics Conf., San Jose, CA, pp 220-226, 1988.

[55] Hummel, R. A., "Automated Fault Injection for Digital Systems," Annual Reliability

and Maintainability Symposium, Los Angeles, CA, pp. 112-117, 1988.

[56] Chin, C. K., and McCluskey, E. J., "Test Length for Pseudorandom Testing," IEEE

Trans. Computers, Vol. C-36, No. 2, pp 252-256, February, 1987.

[57] Williams, T. W., "Test Length in a Self Testing Environment," IEEE Design and Test,

Vol.2., pp 59-63, April 1985.

[58] Beau dry, M. D., "Performance Related Reliability Measures for Computing Systems,"

IEEE Trans. Comput., Vol. C-27, pp 540-547, June 1978.

[59] Koren, I., and Breur, M. A., "On Area and Yield Considerations for Fault Tolerant

VLSI Processor Arrays," IEEE Trans. Comput., Vol. C-33, No. 1, pp 21-27, January

1984.

p. 91

[60] Meyer, J. F., "On Evaluating the Performability of Degradable Computing Systems,"

IEEE Trans. Comput., Vol. C-29, No. 8, August 1980.

[61] Meyer. J. F., "Closed Form Solutions of Performability," IEEE Trans. Comput, Vol.

C-31, No. 7, pp 648-657, July 1982.

[62] Arnold, T. F., "The Concept of Coverage and its Effect on the Reliability Model of a

Repairable System," IEEE Trans. Comput., Vol. C-22, pp 251-254, March 1987.

[63] McGough, J., et al., "The Conservativeness of Reliability Estimates Based on Instan-

taneous Coverage," IEEE Trans. Comput., Vol. C-34, pp 602-609, July 1985.

[64] M. Abadir, J. Newman, D. D'Souza, and S. Spencer, "Partitioning Hierarchical Designs

For Testability," International Test Con/.-pp 174-183, 1991.

[65] K. Kim, J. G. Trent, and D. S. Ha, "Automatic Insertion of BIST Hardware Using

VHDL," 25th ACM/IEEE Design Automation Conference, pp 9-15, 1988.

[66] M. A. Jones, and K. Baker, "An Intelligent Knowledge Based System Tool for High

Level BIST Design," Proc. IEEE International Test Conf., pp 743-746, 1985.

[67] V. Pitchumani, P. Mayor and N. Radia, "A System for Fault Diagnosis and Simulation

of VHDL Descriptions," 28th ACM/IEEE Design Automation Conference, pp 144-150,

1991.

[68] QuickSimll User's Manual, Mentor Graphics Corporation, 1993, 8005 S.W.Boeckman

Road, Wilsonville, Oregon 97070.

[69] R. T. Hartley, "CRIB: Computer Fault Finding Through Knowledge Engineering,"

IEEE Computer, pp 76-83, March 1984.

[70] L. Apfelbaum, "An Expert System for In-Circuit Fault Diagnosis," Proceedings of Int.

Test Conf, pp 868-874, 1985.

p. 92

[71] 0. Grillmeyer, and A. J. Wilkinson, "The Design and Construction of a Rule Base

and an Inference Engine for Test System Diagnosis," Proceedings of Int. Test Conf., pp

857-867, 1985.

[72] "Self Diagnostics on System Level By Design," Proceedings of Int. Test Conf, pp 1921-

1927, 1986.

[73] M. R.Genesereth, "The Use of Design Descriptions in Automated Diagnosis," Artificial

Intelligence, pp 347-40, December 1984.

[74] R. Davis, "Diagnostic Reasoning Based on Behavior and Structure," Artificial Intelli-

gence, pp 347-410, Dec. 1984.

[75] "Diagnostic Reasoning in Digital Systems," Proceedings of the 18th International Sym-

posium on Fault Tolerant Computing, pp 286-291, 1988.

[76] AMPLE Reference Manual, Mentor Graphics Corporation, 8005 S.W.Boeckman Road,

Wilsonville, OR 97070, 1993.

[77] QuickSimll User's Manual, Mentor Graphics Corporation, 8005 S.W.Boeckman Road,

Wilsonville, OR 97070, 1993.

[78] P. L. Goddard, and R. Davis, "Automated FMEA Techniques," Hughes Aircraft Com-

pany, RADC-TR-84-244, Final Technical Report, December 1984.

[79] Rasmuson, D. M., et al., "Common Cause Failure Analysis Techniques: A Review and

Comparative Evaluation," EG&G, September 1979.

[80] D. L. Landis, and D. C. Muha, "Evaluation of System BIST Using Computational

Performance Measures," 1988 International Test Conference, pp 531-536.

[81] P. C. Ward, and J. R. Armstrong, "Behavioral Fault Simulation in VHDL," 1990 Design

Automation Conference, pp 587-593.

p. 93

[82] H. B. Dassault, "The Evolution and Practical Applications of Failure Modes and Ef-

fects Analyses," RADC-TR-83-72, Rome Air Development Center. Air Force Systems

Command, Griffiss Air Force Base, NY 13441.

[83] B. W. Johnson, "Design and Analysis of Fault Tolerant Digital Systems," Addison-

Welsley Publishing Company Inc., ISBN 0-201-07570-9, 1989.

«U.S. GOVERNMENT PRINTING OFFICE: 1995-610-126-50117

p. 94

MISSION

OF

ROME IABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

